KAKATIYA GOVERNMENT COLLEGE HANAMKONDA

Workshop on

"Hands-on Workshop on Python Libraries for Machine Learning"

(08-09-2022 to 21-09-22)

Organised by

Smt.K.Sravana Kumari Sri.V.Ramesh

DEPARTMENT OF COMPUTER SCIENCE AND APPLICATIONS 2022-23

KAKATIYA GOVERNMET COLLEGE-HANAMAKONDA

Department of Computer Science and Applications

CIRCULAR

Date:02-09-2022

Department of Computer Science and Applications is organizing ten days workshop on "Hands-on Workshop on Python Libraries for Machine Learning" from 08-09-2022 to 21-09-2022 for B.COM CA V Sem Students. All the Third year students of B.COM CA are informed to take an active participation to make this activity successful.

NCIPAL COLLEGE anamkonda

Hands-on Workshop on Python Libraries for Machine Learning

About

With the advances in the cognitive computing domain, it is now possible to develop advanced data analysis tools that can aid specialists in decision-making. Machine learning and deep learning form the bases on which such complex systems are developed. In view of the same, the workshop aims to develop the foundations of using ML-python libraries for interested students.

Agenda

- 1. Exploratory Data Analysis
- 2. Data Visualization tools in python
- 3. Different ML models in Python (No theory)
- 4. Selecting the best model

Organisers:

Smt.K.Sravana Kumari Sri.V.Ramesh

Objectives

We'll cover the core Python language and the standard library in detail. This course will cover various skills including text manipulation, modular programming, working with and retrieving data, interacting with files on your computer, and using some of the more popular third-party libraries (and getting them installed when and where we need them). The goal is to get participants up and running with Python in as short a time as possible.

Activities

Students will learn the basics of writing and running Python scripts. We will cover topics for people completely new to programming along with comparisons and contrasts to other programming languages. Everything from "OMG white space?!?!" to ways to manipulate the language into a very terse format (also why you might not want to do that) to cool tricks we can do with the simplest, most basic Python data-types.

The Python standard library likely has everything you need, but we won't stop there. We'll make use of some of the more popular third-party libraries, which will also let us make use of the tool pip for grabbing libraries from the Python Package Index (PyPI).

Task1: Binary Prediction of Smoker Status

This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load

import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory

import os

for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))

You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session /kaggle/input/playground-series-s3e24/sample_submission.csv /kaggle/input/playground-series-s3e24/train.csv /kaggle/input/playground-series-s3e24/test.csv In [2]: import pandas as pd import numpy as np from sklearn.model selection import train test split from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_curve, roc_auc_score, auc In [3]: # Load the train and test data train data = pd.read csv("/kaggle/input/playground-series-s3e24/train.csv") test_data = pd.read_csv("/kaggle/input/playground-series-s3e24/test.csv") In [4]: *# Define the target column* target_column = 'smoking' *# Exclude 'id' column from train data* train_data = train_data.drop(columns=['id'])

Separate features and target variable
X = train_data.drop(columns=[target_column])
y = train_data[target_column]

Split the train data into train and validation sets
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2, random_state=42)
In [5]:
Initialize the Logistic Regression model
model = LogisticRegression(max_iter=5000) # Increase max_iter value

Train the model on the train data
model.fit(X_train, y_train)
Out[5]:

✓ LogisticRegression
LogisticRegression(max_iter=5000)
In [6]:
Predict probabilities on the validation set
y_pred_prob = model.predict_proba(X_valid)[:, 1]

Calculate ROC curve and AUC
fpr, tpr, thresholds = roc_curve(y_valid, y_pred_prob)
roc_auc = auc(fpr, tpr)

print(f'ROC AUC Score: {roc_auc}')
ROC AUC Score: 0.831987247786051
In [7]:
Now, let's make predictions on the test data
Exclude 'id' column from test data
test_predictions = model.predict_proba(test_data.drop(columns=['id']))[:, 1]

Create a submission DataFrame
submission = pd.DataFrame({'id': test_data['id'], 'smoking': test_predictions})

Save the submission to a CSV file
submission.to_csv('submission.csv', index=False)

Task2: Sentiment Analysis of Restaurant Reviews

The purpose of this analysis is to build a prediction model to predict whether a review on the restaurant is positive or negative. To do so, we will work on Restaurant Review dataset, we will load it into predicitve algorithms Multinomial Naive Bayes, Bernoulli Naive Bayes and Logistic Regression. In the end, we hope to find a "best" model for predicting the review's sentiment.

Dataset: <u>Restaurant_Reviews.tsv</u> is a dataset from Kaggle datasets which consists of 1000 reviews on a restaurant.

To build a model to predict if review is positive or negative, following steps are performed.

- Importing Dataset
- Preprocessing Dataset
- Vectorization
- Training and Classification
- Analysis Conclusion

Importing Dataset

Importing the Restaurant Review dataset using pandas library.

In [1]: # Importing the libraries import numpy as np import pandas as pd In [2]: # Importing the dataset dataset = pd.read_csv('../input/Restaurant_Reviews.tsv', delimiter = '\t', quoting = 3) Preprocessing Dataset

Each review undergoes through a preprocessing step, where all the vague information is removed.

- Removing the Stopwords, numeric and speacial charecters.
- Normalizing each review using the approach of stemming.

```
In [3]:
import re
import nltk
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
corpus = []
for i in range(0, 1000):
  review = re.sub('[^a-zA-Z]', '', dataset['Review'][i])
  review = review.lower()
  review = review.split()
  ps = PorterStemmer()
  review = [ps.stem(word) for word in review if not word in set(stopwords.words('english'))]
  review = ''.join(review)
  corpus.append(review)
```

Vectorization

From the cleaned dataset, potential features are extracted and are converted to numerical format. The vectorization techniques are used to convert textual data to numerical format. Using vectorization, a matrix is created where each column represents a feature and each row represents an individual review.

In [4]: # Creating the Bag of Words model using CountVectorizer

from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer(max_features = 1500) X = cv.fit_transform(corpus).toarray() y = dataset.iloc[:, 1].values

Training and Classification

Further the data is splitted into training and testing set using Cross Validation technique. This data is used as input to classification algorithm.

Classification Algorithms:

Algorithms like Decision tree, Support Vector Machine, Logistic Regression, Naive Bayes were implemented and on comparing the evaluation metrics two of the algorithms gave better predictions than others.

- Multinomial Naive Bayes
- Bernoulli Naive Bayes
- Logistic Regression

In [5]:

Splitting the dataset into the Training set and Test set

from sklearn.cross_validation import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 42) /opt/conda/lib/python3.6/site-packages/sklearn/cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

Multinomial NB

In [6]: # Multinomial NB

Fitting Naive Bayes to the Training set from sklearn.naive_bayes import MultinomialNB classifier = MultinomialNB(alpha=0.1) classifier.fit(X_train, y_train)

Predicting the Test set results
y_pred = classifier.predict(X_test)

Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print ("Confusion Matrix:\n",cm)

```
# Accuracy, Precision and Recall
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
score1 = accuracy_score(y_test,y_pred)
score2 = precision_score(y_test,y_pred)
score3 = recall_score(y_test,y_pred)
print("\n")
print("Accuracy is ",round(score1*100,2),"%")
print("Precision is ",round(score2,2))
print("Recall is ",round(score3,2))
```

Confusion Matrix: [[119 33] [34 114]]

Accuracy is 77.67 % Precision is 0.78 Recall is 0.77 **Bernoulli NB**

In [7]: # Bernoulli NB

Fitting Naive Bayes to the Training set from sklearn.naive_bayes import BernoulliNB classifier = BernoulliNB(alpha=0.8) classifier.fit(X_train, y_train)

Predicting the Test set results
y_pred = classifier.predict(X_test)

Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print ("Confusion Matrix:\n",cm)

```
# Accuracy, Precision and Recall
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
score1 = accuracy_score(y_test,y_pred)
score2 = precision_score(y_test,y_pred)
score3 = recall_score(y_test,y_pred)
print("\n")
print("Accuracy is ",round(score1*100,2),"%")
print("Precision is ",round(score3,2))
Confusion Matrix:
[[115 37]
[ 32 116]]
```

Accuracy is 77.0 % Precision is 0.76 Recall is 0.78 **Logistic Regression**

In [8]:

Logistic Regression

Fitting Logistic Regression to the Training set
from sklearn import linear_model
classifier = linear_model.LogisticRegression(C=1.5)
classifier.fit(X_train, y_train)

Predicting the Test set results
y_pred = classifier.predict(X_test)

Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print ("Confusion Matrix:\n",cm)

```
# Accuracy, Precision and Recall
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
score1 = accuracy_score(y_test,y_pred)
score2 = precision_score(y_test,y_pred)
score3 = recall_score(y_test,y_pred)
print("\n")
print("Accuracy is ",round(score1*100,2),"%")
print("Precision is ",round(score3,2))
Confusion Matrix:
[[125 27]
[ 43 105]]
```

Accuracy is 76.67 % Precision is 0.8 Recall is 0.71

Analysis and Conclusion

In this study, an attempt has been made to classify sentiment analysis for restaurant reviews using machine learning techniques. Two algorithms namely Multinomial Naive Bayes and Bernoulli Naive Bayes are implemented.

Evaluation metrics used here are accuracy, precision and recall.

Using Multinomial Naive Bayes,

- Accuracy of prediction is 77.67%.
- Precision of prediction is 0.78.
- Recall of prediction is 0.77.

Using Bernoulli Naive Bayes,

- Accuracy of prediction is 77.0%.
- Precision of prediction is 0.76.
- Recall of prediction is 0.78.

Using Logistic Regression,

- Accuracy of prediction is 76.67%.
- Precision of prediction is 0.8.
- Recall of prediction is 0.71.

From the above results, Multinomial Naive Bayes is slightly better method compared to Bernoulli Naive Bayes and Logistic Regression, with 77.67% accuracy which means the model built for the prediction of sentiment of the restaurant review gives 77.

Task3: MANIPULATING DATA FRAMES WITH PANDAS

read data
data = pd.read_csv('../input/pokemon.csv')
data= data.set_index("#")
data.head()

	Name	Type 1	Type 2	H P	Attac k	Defens e	Sp. At k	Sp. De f	Spee d	Generatio n	Legendar y
#											
1	Bulbasaur	Gras s	Poiso n	45	49	49	65	65	45	1	False
2	Ivysaur	Gras s	Poiso n	60	62	63	80	80	60	1	False
3	Venusaur	Gras s	Poiso n	80	82	83	10 0	10 0	80	1	False

Out[81]:

	Name	Type 1	Type 2	H P	Attac k	Defens e	Sp. At k	Sp. De f	Spee d	Generatio n	Legendar y
#											
4	Mega Venusaur	Gras s	Poiso n	80	100	123	12 2	12 0	80	1	False
5	Charmande r	Fire	NaN	39	52	43	60	50	65	1	False

```
In [82]:
```

indexing using square brackets data["HP"][1] Out[82]: 45 In [83]: # using column attribute and row label data.HP[1] Out[83]: 45 In [84]: *# using loc accessor* data.loc[1,["HP"]] Out[84]: HP 45 Name: 1, dtype: object In [85]: # Selecting only some columns data[["HP","Attack"]]

Out[85]:

	HP	Attack
#		

	HP	Attack
#		
1	45	49
2	60	62
3	80	82
4	80	100
5	39	52
6	58	64
7	78	84
8	78	130
9	78	104
10	44	48

	HP	Attack
#		
11	59	63
12	79	83
13	79	103
14	45	30
15	50	20
16	60	45
17	40	35
18	45	25
19	65	90
20	65	150

	HP	Attack
#		
21	40	45
22	63	60
23	83	80
24	83	80
25	30	56
26	55	81
27	40	60
28	65	90
29	35	60
30	60	85

	HP	Attack
#		
771	95	65
772	78	92
773	67	58
774	50	50
775	45	50
776	68	75
777	90	100
778	57	80
779	43	70

	HP	Attack
#		
780	85	110
781	49	66
782	44	66
783	54	66
784	59	66
785	65	90
786	55	85
787	75	95
788	85	100
789	55	69

	HP	Attack
#		
790	95	117
791	40	30
792	85	70
793	126	131
794	126	131
795	108	100
796	50	100
797	50	160
798	80	110
799	80	160

	HP	Attack
#		
800	80	110

 $800 \ rows \times 2 \ columns$

SLICING DATA FRAME

- Difference between selecting columns
 - Series and data frames
- Slicing and indexing series
- Reverse slicing
- From something to end

In [86]:

Difference between selecting columns: series and dataframes
print(type(data["HP"])) # series
print(type(data[["HP"]])) # data frames
<class 'pandas.core.series.Series'>
<class 'pandas.core.frame.DataFrame'>

In [87]:

Slicing and indexing series
data.loc[1:10,"HP":"Defense"] # 10 and "Defense" are inclusive

Out[87]:

	HP	Attack	Defense
#			
1	45	49	49

	HP	Attack	Defense
#			
2	60	62	63
3	80	82	83
4	80	100	123
5	39	52	43
6	58	64	58
7	78	84	78
8	78	130	111
9	78	104	78
10	44	48	65

Reverse slicing
data.loc[10:1:-1,"HP":"Defense"]

In [88]:

Out[88]:

	HP	Attack	Defense			
#						
10	44	48	65			
9	78	104	78			
8	78	130	111			
7	78	84	78			
6	58	64	58 43			
5	39	52				
4	80	100	123			
3	80	82	83			
2	60	62	63			
1	45	49	49			

From something to end data.loc[1:10,"Speed":] In [89]:

Out[89]:

	Speed	Generation	Legendary
#			
1	45	1	False
2	60	1	False
3	80	1	False
4	80	1	False
5	65	1	False
6	80	1	False
7	100	1	False
8	100	1	False
9	100	1	False
10	43	1	False

FILTERING DATA FRAMES

Creating boolean series Combining filters Filtering column based others

In [90]:

Creating boolean series boolean = data.HP > 200 data[boolean]

	Out[90]:												
	Name	Type 1	Typ e 2	HP	Attac k	Defens e	Sp. At k	Sp. De f	Spee d	Generatio n	Legendar y		
#													
12 2	Chanse y	Norma 1	NaN	25 0	5	5	35	10 5	50	1	False		
26 2	Blissey	Norma 1	NaN	25 5	10	10	75	13 5	55	2	False		

Combining filters first_filter = data.HP > 150 second_filter = data.Speed > 35 data[first_filter & second_filter]

Out[91]: Sp. Sp. Spee Legendar Тур Defens Generatio Attac Type 1 HP Name At De e 2 k d e n у f k # 12 Norma 25 10 Chansey NaN 5 5 35 50 1 False 2 1 0 5

In [91]:

	Name	Type 1	Typ e 2	HP	Attac k	Defens e	Sp. At k	Sp. De f	Spee d	Generatio n	Legendar y
#											
26 2	Blissey	Norma l	NaN	25 5	10	10	75	13 5	55	2	False
35 2	Wailord	Water	NaN	17 0	90	45	90	45	60	3	False
65 6	Alomomol a	Water	NaN	16 5	75	80	40	45	65	5	False

In [92]:

Filtering column based others data.HP[data.Speed<15]

Out[92]:

231 20 360 45 487 50 496 135 659 44 Name: HP, dtype: int64

TRANSFORMING DATA

- Plain python functions
- Lambda function: to apply arbitrary python function to every element
- Defining column using other columns

In [93]:

Plain python functions
def div(n):
 return n/2

data.HP.apply(div)

Out[93]:

$\begin{array}{c} \# \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \end{array}$	22.5 30.0 40.0 40.0 19.5 29.0 39.0 39.0 29.5 39.5 22.5 25.0 30.0 20.0 22.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5
771	47.5
772	39.0
773	33.5
774	25.0
775	22.5
776	34.0
777	45.0
778	28.5
779	21.5
780	42.5
781	24.5
781	24.5
782	22.0
783	27.0

784	29.5
785	32.5
786	27.5
787	37.5
788	42.5
789	27.5
790	47.5
791	20.0
792	42.5
793	63.0
794	63.0
795	54.0
796	25.0
797	25.0
798	40.0
799	40.0
800	40.0
Nam	e: HP, Length: 800, dtype: float64

In [94]:

Or we can use lambda function data.HP.apply(lambda n : n/2)

Out[94	4]:
--------	-----

1 22.5 2 30.0 3 40.0 4 40.0 5 19.5 6 29.0 7 39.0 8 39.0 9 39.0 10 22.0 29.5 11 12 39.5 13 39.5 14 22.5 15 25.0 16 30.0 17 20.0 18 22.5 19 32.5 20 32.5 21 20.0 22 31.5 23 41.5 24 41.5

25 26 27 28 29	15.0 27.5 20.0 32.5 17.5
30	30.0
771	47.5
772	39.0
773	33.5
774	25.0
775	22.5
776	34.0
777	45.0
778	28.5
779	21.5
780	42.5
781	24.5
782	22.0
783	27.0
784	29.5
785	32.5
786	27.5
787	37.5
788	42.5
789 700	27.5
790 701	47.5
791 792	20.0 42.5
792 793	42.3 63.0
793 794	63.0
794	54.0
	25.0
	25.0
	40.0
	40.0
	40.0
	e: HP, Length: 800, dtype: float64
1 (411)	, Dengan, ooo, arype. noutor
4 D .	fining a lumm using other columns

In [95]:

Defining column using other columns data["total_power"] = data.Attack + data.Defense data.head()

Out[95]:

	Name	Typ e 1	Type 2	H P	Attac k	Defen se	Sp At k	Sp De f	Spee d	Generati on	Legenda ry	total_pow er
#												
1	Bulbasa ur	Gras s	Poiso n	45	49	49	65	65	45	1	False	98
2	Ivysaur	Gras s	Poiso n	60	62	63	80	80				

PHOTOS

Attendance

5

Class : BCom-CA - III - C 2022-23 Hands-on Workshop on Python Libraries for Machine Learning

\vdash	SNo	HTN	N	lame	oslog	9.01/12/00	122 309	12 14/09/	22 15/09	122 16 69	22 17/09/2	2 19/09/2	20/09/2	221/09
L	1	00621218	KOMMULA NITH	liN	prover	hin Kiente	thir 1239t					11. 2		
	2	00621218	KOMMULA NITH	IN	k. 60	the u.A.		111	0.11	11	0.11	1/11	12.00	. att
L	3	006212182	KONDAPALLY VEI	NKATESH	RKal	D.Ko	1. K. Vento	ater Venkia	Abst	·DE	and	-Det	- Ast	Gut
	4	006212183	KONGARI PRUDH	VI RAJ	K.pndhv	1 12 Prush	al Kitmathai	Least in Content	C. Produt	4. Prudhu	1 kipridu	1 molu	period	r prog
_	5 0	006212184	KOPPULA HARI KR	ISHNA	kflernt						Katyuta		K.Ant	-
	60	06212185	KOPPULA NAGARA	JU	Leavoir	showing	harri	Join	Ini	aboring	doavin	havi	(Jan)	1
	7 0	06212186	KORUKOPPULA TH	ARUN	hoven	Thores	00	170	101	Thomas	00	a	Tore	Those
	8 00	06212187	KOTHAPALLI SUNNY		leng	Suss	2 C C C C C C C C C C C C C C C C C C C	Sum	Lenny	Sum	Sum	0	0	1
1	9 00	6212188	KOUDAGANI ANIL	4	anil	Anil	Anil	Anil	Ani	Anil	Anil	Anil	Anil	Anil
10	000	5212189	KOULAGONI VINAY	V?	naj	vinal	vina	Vinar	winay	vinay	Vinay	Vinor		homen
11	006	212190	KOWDAGANI TEJA	*	Tein	K.TEN	K. Tea	K. Teja	K.TEja	V	k.Teja	9	1 3	K.Tej
12	006	212191	KOYYADA VAMSHI	Va	mshi	Vamshi	Vanshi	Vamyhi	Vamski	Vanshi	Vamski	vanshi		1
13	0062	212192	KUMMARI MAHENDA	R .	rahender,	k. sachard		(porticit	7 mohre				VERSE	
14	0062	12193	KUNUSOTH NAVEEN	12.11	humen l		L Noveen	k Noveen	1.1.0.12.00	2. Mahd				
15	0062	12194	URRI MOUNIKA	a.L anida KW	JOJESP	Masha	uoyist	10 dains	110Metro	-SIDHER	Mamil	r Mount	C - Mounits	C.Mou

16	006212195	KURSAM YASHODA	1	1	1	L	Î.	1	1	ī.	1 the	
17		LAKKARSU SAI	0.2	O.:	10,	03	(m)	ß.			1. 00	0/1000
		LAKKARSU SAI	fai	Sai	Clai	Sai	fai	Sai	Ceri	Gul		(326) T
18	3 006212197	LAVUDYA NAVYA	Jaury	Mary	Nary	(njourga	Narry	Darrye	Navingo	Jarry	, totent	a town
19	006212198	LAVUDYA THIRUPATHI		7200	100	tas	(70)	Cord	(CO)	600	a	1000
20	006212199	LINGALA SPANDANA	Spandane	Sprudane	Speunderne	Spandune	Gaul	Carl		Concil		10 mg
21	006212200	LODE SHRAVAN KUMAR	1	1	0	0	0	0	()'	e spenduna	Sparder	a spandeur
22	006212201	LOTTI POOJITHA	Poojitha	- navini	Positha		Dan ith	Poojith		Davil	Poojith	441
23	006212202	LYADALLA KEERTHI	1 . Karthi	L. Leath	Ray	Re	1003110	Ry	E .	Poolitha	POOJITE	Poojtha
24	006212203	MADDEBOINA PRASHANTH	Historian .		Chanting	and the set	Matanine	Prost	parte	Eng	(thy	Carl
25	006212204	MADI SHASHI VARDHAN	motoshived	1000	vistativally	sul	Shir	-Sheel		Post - Misic	Cent	(P.A
26	006212205	MAHANKALI NAGARAJU	Mary	Niagny	· laggag	alagost	laging	bgargy	Nagraf	lagary	MSE	N1.SV
27	006212206	MALLABOINA RAKESH	M. Rakesh	Quel	M Rakesh	- A .	M. Rokesh	10 121	M. Rakest	N 1 1	NOV)	N. Raugh
28	006212207	MALOTH THIRUPATHI	Red	Rad	Ril	RI	Res	RUJ	E P	All	(T) a	00
29	006212208	MAMIDI SRAVAN KUMAR	STONON	Staven	Sound	Soullan	SpaNan	Stavan	Soaval	Carbin Carbin	week -	AN
30	006212209	MANCHALA RAJU	Q.A.	Red	R	Red	Ru.	Qu	DI	Sollar	Saval	South
31	006212210	MANDA CHANDU	chang	charef	liant	wint	dreing	hair	hant.	charge	land	chang
32	006212211	MANDHA VAMSHI			Varnshi	vomiti	Varuhi	Vanshi	Varishi		1	
33	006212212	MANKURTHI SURESH	Rack	Part	Sine !!	Rap	Ray	W Chier Shi	Con us Mi	6	Vanst	Vanzy
34	006212213	MANTHURTHI RAKESH	Parent	Robert	Pastek	Doskest	Prier	Raken	Pastes	Dates (Daken	Pakest
35	006212214	MANUPATI RAJASHEKER	But	By	Rel	Bal	Del	ERic	R	Cart	ad	Rei
36	006212215	MARAPALLI ASHISH	Jupen of	Ampart	mapin	1 uper	Aufen	June 1	Amornin	Amerit	Luni	A week