
KAKATIYA GOVERNMENT COLLEGE

HANAMKONDA

Workshop
on

“Hands-on Workshop on Python Libraries for Machine Learning“

(08-09-2022 to 21-09-22)

Organised by

Smt.K.Sravana Kumari

Sri.V.Ramesh

DEPARTMENT OF COMPUTER SCIENCE AND APPLICATIONS

2022-23

KAKATIYA GOVERNMET COLLEGE-HANAMAKONDA

Department of Computer Science and Applications

C I R C U L A R

 Date:02-09-2022

Department of Computer Science and Applications is organizing ten days

workshop on “Hands-on Workshop on Python Libraries for Machine Learning“

from 08-09-2022 to 21-09-2022 for B.COM CA V Sem Students. All the Third year

students of B.COM CA are informed to take an active participation to make this activity

successful.

Hands-on Workshop on Python Libraries for Machine Learning

About

With the advances in the cognitive computing domain, it is now possible to develop advanced data

analysis tools that can aid specialists in decision-making. Machine learning and deep learning form the

bases on which such complex systems are developed. In view of the same, the workshop aims to develop

the foundations of using ML-python libraries for interested students.

Agenda

1. Exploratory Data Analysis

2. Data Visualization tools in python

3. Different ML models in Python (No theory)

4. Selecting the best model

Organisers:

Smt.K.Sravana Kumari Sri.V.Ramesh

Objectives
We'll cover the core Python language and the standard library in detail. This course will cover various

skills including text manipulation, modular programming, working with and retrieving data, interacting

with files on your computer, and using some of the more popular third-party libraries (and getting them

installed when and where we need them). The goal is to get participants up and running with Python in

as short a time as possible.

Activities
Students will learn the basics of writing and running Python scripts. We will cover topics for people

completely new to programming along with comparisons and contrasts to other programming

languages. Everything from "OMG white space?!?!" to ways to manipulate the language into a very

terse format (also why you might not want to do that) to cool tricks we can do with the simplest, most

basic Python data-types.

The Python standard library likely has everything you need, but we won't stop there. We'll make use of

some of the more popular third-party libraries, which will also let us make use of the tool pip for

grabbing libraries from the Python Package Index (PyPI).

Task1: Binary Prediction of Smoker Status

This Python 3 environment comes with many helpful analytics libraries installed

It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python

For example, here's several helpful packages to load

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

Input data files are available in the read-only "../input/" directory

For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input

directory

import os

for dirname, _, filenames in os.walk('/kaggle/input'):

 for filename in filenames:

 print(os.path.join(dirname, filename))

You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output

when you create a version using "Save & Run All"

You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current

session

/kaggle/input/playground-series-s3e24/sample_submission.csv

/kaggle/input/playground-series-s3e24/train.csv

/kaggle/input/playground-series-s3e24/test.csv

In [2]:

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import roc_curve, roc_auc_score, auc

In [3]:

Load the train and test data

train_data = pd.read_csv("/kaggle/input/playground-series-s3e24/train.csv")

test_data = pd.read_csv("/kaggle/input/playground-series-s3e24/test.csv")

In [4]:

Define the target column

target_column = 'smoking'

Exclude 'id' column from train data

train_data = train_data.drop(columns=['id'])

Separate features and target variable

X = train_data.drop(columns=[target_column])

y = train_data[target_column]

Split the train data into train and validation sets

X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2, random_state=42)

In [5]:

Initialize the Logistic Regression model

model = LogisticRegression(max_iter=5000) # Increase max_iter value

Train the model on the train data

model.fit(X_train, y_train)

Out[5]:

LogisticRegression

LogisticRegression(max_iter=5000)

In [6]:

Predict probabilities on the validation set

y_pred_prob = model.predict_proba(X_valid)[:, 1]

Calculate ROC curve and AUC

fpr, tpr, thresholds = roc_curve(y_valid, y_pred_prob)

roc_auc = auc(fpr, tpr)

print(f'ROC AUC Score: {roc_auc}')

ROC AUC Score: 0.831987247786051

In [7]:

Now, let's make predictions on the test data

Exclude 'id' column from test data

test_predictions = model.predict_proba(test_data.drop(columns=['id']))[:, 1]

Create a submission DataFrame

submission = pd.DataFrame({'id': test_data['id'], 'smoking': test_predictions})

Save the submission to a CSV file

submission.to_csv('submission.csv', index=False)

Task2: Sentiment Analysis of Restaurant Reviews

The purpose of this analysis is to build a prediction model to predict whether a review on the restaurant is

positive or negative. To do so, we will work on Restaurant Review dataset, we will load it into predicitve

algorithms Multinomial Naive Bayes, Bernoulli Naive Bayes and Logistic Regression. In the end, we

hope to find a "best" model for predicting the review's sentiment.

Dataset: Restaurant_Reviews.tsv is a dataset from Kaggle datasets which consists of 1000 reviews on a

restaurant.

To build a model to predict if review is positive or negative, following steps are performed.

 Importing Dataset

 Preprocessing Dataset

 Vectorization

 Training and Classification

 Analysis Conclusion

https://www.kaggle.com/hj5992/restaurantreviews

Importing Dataset

Importing the Restaurant Review dataset using pandas library.

In [1]:

Importing the libraries

import numpy as np

import pandas as pd

In [2]:

Importing the dataset

dataset = pd.read_csv('../input/Restaurant_Reviews.tsv', delimiter = '\t', quoting = 3)

Preprocessing Dataset

Each review undergoes through a preprocessing step, where all the vague information is removed.

 Removing the Stopwords, numeric and speacial charecters.

 Normalizing each review using the approach of stemming.

In [3]:

import re

import nltk

from nltk.corpus import stopwords

from nltk.stem.porter import PorterStemmer

corpus = []

for i in range(0, 1000):

 review = re.sub('[^a-zA-Z]', ' ', dataset['Review'][i])

 review = review.lower()

 review = review.split()

 ps = PorterStemmer()

 review = [ps.stem(word) for word in review if not word in set(stopwords.words('english'))]

 review = ' '.join(review)

 corpus.append(review)

Vectorization

From the cleaned dataset, potential features are extracted and are converted to numerical format. The

vectorization techniques are used to convert textual data to numerical format. Using vectorization, a

matrix is created where each column represents a feature and each row represents an individual review.

In [4]:

Creating the Bag of Words model using CountVectorizer

from sklearn.feature_extraction.text import CountVectorizer

cv = CountVectorizer(max_features = 1500)

X = cv.fit_transform(corpus).toarray()

y = dataset.iloc[:, 1].values

Training and Classification

Further the data is splitted into training and testing set using Cross Validation technique. This data is used

as input to classification algorithm.

Classification Algorithms:

Algorithms like Decision tree, Support Vector Machine, Logistic Regression, Naive Bayes were

implemented and on comparing the evaluation metrics two of the algorithms gave better predictions than

others.

 Multinomial Naive Bayes

 Bernoulli Naive Bayes

 Logistic Regression

In [5]:

Splitting the dataset into the Training set and Test set

from sklearn.cross_validation import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 42)

/opt/conda/lib/python3.6/site-packages/sklearn/cross_validation.py:41: DeprecationWarning: This module

was deprecated in version 0.18 in favor of the model_selection module into which all the refactored

classes and functions are moved. Also note that the interface of the new CV iterators are different from

that of this module. This module will be removed in 0.20.

 "This module will be removed in 0.20.", DeprecationWarning)

Multinomial NB

In [6]:

Multinomial NB

Fitting Naive Bayes to the Training set

from sklearn.naive_bayes import MultinomialNB

classifier = MultinomialNB(alpha=0.1)

classifier.fit(X_train, y_train)

Predicting the Test set results

y_pred = classifier.predict(X_test)

Making the Confusion Matrix

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_pred)

print ("Confusion Matrix:\n",cm)

Accuracy, Precision and Recall

from sklearn.metrics import accuracy_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

score1 = accuracy_score(y_test,y_pred)

score2 = precision_score(y_test,y_pred)

score3= recall_score(y_test,y_pred)

print("\n")

print("Accuracy is ",round(score1*100,2),"%")

print("Precision is ",round(score2,2))

print("Recall is ",round(score3,2))

Confusion Matrix:

 [[119 33]

 [34 114]]

Accuracy is 77.67 %

Precision is 0.78

Recall is 0.77

Bernoulli NB

In [7]:

Bernoulli NB

Fitting Naive Bayes to the Training set

from sklearn.naive_bayes import BernoulliNB

classifier = BernoulliNB(alpha=0.8)

classifier.fit(X_train, y_train)

Predicting the Test set results

y_pred = classifier.predict(X_test)

Making the Confusion Matrix

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_pred)

print ("Confusion Matrix:\n",cm)

Accuracy, Precision and Recall

from sklearn.metrics import accuracy_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

score1 = accuracy_score(y_test,y_pred)

score2 = precision_score(y_test,y_pred)

score3= recall_score(y_test,y_pred)

print("\n")

print("Accuracy is ",round(score1*100,2),"%")

print("Precision is ",round(score2,2))

print("Recall is ",round(score3,2))

Confusion Matrix:

 [[115 37]

 [32 116]]

Accuracy is 77.0 %

Precision is 0.76

Recall is 0.78

Logistic Regression

In [8]:

Logistic Regression

Fitting Logistic Regression to the Training set

from sklearn import linear_model

classifier = linear_model.LogisticRegression(C=1.5)

classifier.fit(X_train, y_train)

Predicting the Test set results

y_pred = classifier.predict(X_test)

Making the Confusion Matrix

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_pred)

print ("Confusion Matrix:\n",cm)

Accuracy, Precision and Recall

from sklearn.metrics import accuracy_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

score1 = accuracy_score(y_test,y_pred)

score2 = precision_score(y_test,y_pred)

score3= recall_score(y_test,y_pred)

print("\n")

print("Accuracy is ",round(score1*100,2),"%")

print("Precision is ",round(score2,2))

print("Recall is ",round(score3,2))

Confusion Matrix:

 [[125 27]

 [43 105]]

Accuracy is 76.67 %

Precision is 0.8

Recall is 0.71

Analysis and Conclusion

In this study, an attempt has been made to classify sentiment analysis for restaurant reviews using

machine learning techniques. Two algorithms namely Multinomial Naive Bayes and Bernoulli Naive

Bayes are implemented.

Evaluation metrics used here are accuracy, precision and recall.

Using Multinomial Naive Bayes,

 Accuracy of prediction is 77.67%.

 Precision of prediction is 0.78.

 Recall of prediction is 0.77.

Using Bernoulli Naive Bayes,

 Accuracy of prediction is 77.0%.

 Precision of prediction is 0.76.

 Recall of prediction is 0.78.

Using Logistic Regression,

 Accuracy of prediction is 76.67%.

 Precision of prediction is 0.8.

 Recall of prediction is 0.71.

From the above results, Multinomial Naive Bayes is slightly better method compared to Bernoulli Naive

Bayes and Logistic Regression, with 77.67% accuracy which means the model built for the prediction of

sentiment of the restaurant review gives 77.

Task3: MANIPULATING DATA FRAMES WITH PANDAS

read data

data = pd.read_csv('../input/pokemon.csv')

data= data.set_index("#")

data.head()

Out[81]:

Name
Type

1

Type

2

H

P

Attac

k

Defens

e

Sp.

At

k

Sp.

De

f

Spee

d

Generatio

n

Legendar

y

1 Bulbasaur
Gras

s

Poiso

n
45 49 49 65 65 45 1 False

2 Ivysaur
Gras

s

Poiso

n
60 62 63 80 80 60 1 False

3 Venusaur
Gras

s

Poiso

n
80 82 83

10

0

10

0
80 1 False

Name
Type

1

Type

2

H

P

Attac

k

Defens

e

Sp.

At

k

Sp.

De

f

Spee

d

Generatio

n

Legendar

y

4
Mega

Venusaur

Gras

s

Poiso

n
80 100 123

12

2

12

0
80 1 False

5
Charmande

r
Fire NaN 39 52 43 60 50 65 1 False

In [82]:

indexing using square brackets

data["HP"][1]

Out[82]:

45

In [83]:

using column attribute and row label

data.HP[1]

Out[83]:

45

In [84]:

using loc accessor

data.loc[1,["HP"]]

Out[84]:

HP 45

Name: 1, dtype: object

In [85]:

Selecting only some columns

data[["HP","Attack"]]

Out[85]:

HP Attack

HP Attack

1 45 49

2 60 62

3 80 82

4 80 100

5 39 52

6 58 64

7 78 84

8 78 130

9 78 104

10 44 48

HP Attack

11 59 63

12 79 83

13 79 103

14 45 30

15 50 20

16 60 45

17 40 35

18 45 25

19 65 90

20 65 150

HP Attack

21 40 45

22 63 60

23 83 80

24 83 80

25 30 56

26 55 81

27 40 60

28 65 90

29 35 60

30 60 85

HP Attack

...

771 95 65

772 78 92

773 67 58

774 50 50

775 45 50

776 68 75

777 90 100

778 57 80

779 43 70

HP Attack

780 85 110

781 49 66

782 44 66

783 54 66

784 59 66

785 65 90

786 55 85

787 75 95

788 85 100

789 55 69

HP Attack

790 95 117

791 40 30

792 85 70

793 126 131

794 126 131

795 108 100

796 50 100

797 50 160

798 80 110

799 80 160

HP Attack

800 80 110

800 rows × 2 columns

SLICING DATA FRAME

 Difference between selecting columns

 Series and data frames

 Slicing and indexing series

 Reverse slicing

 From something to end

In [86]:

Difference between selecting columns: series and dataframes

print(type(data["HP"])) # series

print(type(data[["HP"]])) # data frames

<class 'pandas.core.series.Series'>

<class 'pandas.core.frame.DataFrame'>

In [87]:

Slicing and indexing series

data.loc[1:10,"HP":"Defense"] # 10 and "Defense" are inclusive

Out[87]:

HP Attack Defense

1 45 49 49

HP Attack Defense

2 60 62 63

3 80 82 83

4 80 100 123

5 39 52 43

6 58 64 58

7 78 84 78

8 78 130 111

9 78 104 78

10 44 48 65

In [88]:

Reverse slicing

data.loc[10:1:-1,"HP":"Defense"]

Out[88]:

HP Attack Defense

10 44 48 65

9 78 104 78

8 78 130 111

7 78 84 78

6 58 64 58

5 39 52 43

4 80 100 123

3 80 82 83

2 60 62 63

1 45 49 49

In [89]:

From something to end

data.loc[1:10,"Speed":]

Out[89]:

Speed Generation Legendary

1 45 1 False

2 60 1 False

3 80 1 False

4 80 1 False

5 65 1 False

6 80 1 False

7 100 1 False

8 100 1 False

9 100 1 False

10 43 1 False

FILTERING DATA FRAMES

Creating boolean series Combining filters Filtering column based others

In [90]:

Creating boolean series

boolean = data.HP > 200

data[boolean]

Out[90]:

Name Type 1
Typ

e 2
HP

Attac

k

Defens

e

Sp.

At

k

Sp.

De

f

Spee

d

Generatio

n

Legendar

y

12

2

Chanse

y

Norma

l
NaN

25

0
5 5 35

10

5
50 1 False

26

2
Blissey

Norma

l
NaN

25

5
10 10 75

13

5
55 2 False

In [91]:

Combining filters

first_filter = data.HP > 150

second_filter = data.Speed > 35

data[first_filter & second_filter]

Out[91]:

Name Type 1
Typ

e 2
HP

Attac

k

Defens

e

Sp.

At

k

Sp.

De

f

Spee

d

Generatio

n

Legendar

y

12

2
Chansey

Norma

l
NaN

25

0
5 5 35

10

5
50 1 False

Name Type 1
Typ

e 2
HP

Attac

k

Defens

e

Sp.

At

k

Sp.

De

f

Spee

d

Generatio

n

Legendar

y

26

2
Blissey

Norma

l
NaN

25

5
10 10 75

13

5
55 2 False

35

2
Wailord Water NaN

17

0
90 45 90 45 60 3 False

65

6

Alomomol

a
Water NaN

16

5
75 80 40 45 65 5 False

In [92]:

Filtering column based others

data.HP[data.Speed<15]

Out[92]:

231 20

360 45

487 50

496 135

659 44

Name: HP, dtype: int64

TRANSFORMING DATA

 Plain python functions

 Lambda function: to apply arbitrary python function to every element

 Defining column using other columns

In [93]:

Plain python functions

def div(n):

 return n/2

data.HP.apply(div)

Out[93]:

1 22.5

2 30.0

3 40.0

4 40.0

5 19.5

6 29.0

7 39.0

8 39.0

9 39.0

10 22.0

11 29.5

12 39.5

13 39.5

14 22.5

15 25.0

16 30.0

17 20.0

18 22.5

19 32.5

20 32.5

21 20.0

22 31.5

23 41.5

24 41.5

25 15.0

26 27.5

27 20.0

28 32.5

29 17.5

30 30.0

 ...

771 47.5

772 39.0

773 33.5

774 25.0

775 22.5

776 34.0

777 45.0

778 28.5

779 21.5

780 42.5

781 24.5

782 22.0

783 27.0

784 29.5

785 32.5

786 27.5

787 37.5

788 42.5

789 27.5

790 47.5

791 20.0

792 42.5

793 63.0

794 63.0

795 54.0

796 25.0

797 25.0

798 40.0

799 40.0

800 40.0

Name: HP, Length: 800, dtype: float64

In [94]:

Or we can use lambda function

data.HP.apply(lambda n : n/2)

Out[94]:

1 22.5

2 30.0

3 40.0

4 40.0

5 19.5

6 29.0

7 39.0

8 39.0

9 39.0

10 22.0

11 29.5

12 39.5

13 39.5

14 22.5

15 25.0

16 30.0

17 20.0

18 22.5

19 32.5

20 32.5

21 20.0

22 31.5

23 41.5

24 41.5

25 15.0

26 27.5

27 20.0

28 32.5

29 17.5

30 30.0

 ...

771 47.5

772 39.0

773 33.5

774 25.0

775 22.5

776 34.0

777 45.0

778 28.5

779 21.5

780 42.5

781 24.5

782 22.0

783 27.0

784 29.5

785 32.5

786 27.5

787 37.5

788 42.5

789 27.5

790 47.5

791 20.0

792 42.5

793 63.0

794 63.0

795 54.0

796 25.0

797 25.0

798 40.0

799 40.0

800 40.0

Name: HP, Length: 800, dtype: float64

In [95]:

Defining column using other columns

data["total_power"] = data.Attack + data.Defense

data.head()

Out[95]:

Name
Typ

e 1

Type

2

H

P

Attac

k

Defen

se

Sp

.

At

k

Sp

.

De

f

Spee

d

Generati

on

Legenda

ry

total_pow

er

1
Bulbasa

ur

Gras

s

Poiso

n
45 49 49 65 65 45 1 False 98

2 Ivysaur
Gras

s

Poiso

n
60 62 63 80 80

 PHOTOS

Attendance

