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Hands-on Workshop on Python Libraries for Machine Learning 

About 

With the advances in the cognitive computing domain, it is now possible to develop advanced data 

analysis tools that can aid specialists in decision-making. Machine learning and deep learning form the 

bases on which such complex systems are developed. In view of the same, the workshop aims to develop 

the foundations of using ML-python libraries for interested students. 

Agenda 

1. Exploratory Data Analysis 

2. Data Visualization tools in python 

3. Different ML models in Python (No theory) 

4. Selecting the best model 

Organisers: 

 

Smt.K.Sravana Kumari                Sri.V.Ramesh 

 

 

Objectives 
We'll cover the core Python language and the standard library in detail. This course will cover various 

skills including text manipulation, modular programming, working with and retrieving data, interacting 

with files on your computer, and using some of the more popular third-party libraries (and getting them 

installed when and where we need them). The goal is to get participants up and running with Python in 

as short a time as possible. 

Activities 
Students will learn the basics of writing and running Python scripts. We will cover topics for people 

completely new to programming along with comparisons and contrasts to other programming 

languages. Everything from "OMG white space?!?!" to ways to manipulate the language into a very 

terse format (also why you might not want to do that) to cool tricks we can do with the simplest, most 

basic Python data-types. 

The Python standard library likely has everything you need, but we won't stop there. We'll make use of 

some of the more popular third-party libraries, which will also let us make use of the tool pip for 

grabbing libraries from the Python Package Index (PyPI). 

Task1: Binary Prediction of Smoker Status 

# This Python 3 environment comes with many helpful analytics libraries installed 

# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python 



# For example, here's several helpful packages to load 

 

import numpy as np # linear algebra 

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) 

 

# Input data files are available in the read-only "../input/" directory 

# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input 

directory 

 

import os 

for dirname, _, filenames in os.walk('/kaggle/input'): 

    for filename in filenames: 

        print(os.path.join(dirname, filename)) 

 

# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output 

when you create a version using "Save & Run All"  

# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current 

session 

/kaggle/input/playground-series-s3e24/sample_submission.csv 

/kaggle/input/playground-series-s3e24/train.csv 

/kaggle/input/playground-series-s3e24/test.csv 

In [2]: 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import roc_curve, roc_auc_score, auc 

In [3]: 

# Load the train and test data 

train_data = pd.read_csv("/kaggle/input/playground-series-s3e24/train.csv") 

test_data = pd.read_csv("/kaggle/input/playground-series-s3e24/test.csv") 

In [4]: 

# Define the target column 

target_column = 'smoking' 

 

# Exclude 'id' column from train data 

train_data = train_data.drop(columns=['id']) 

 

# Separate features and target variable 

X = train_data.drop(columns=[target_column]) 

y = train_data[target_column] 

 

# Split the train data into train and validation sets 

X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2, random_state=42) 

In [5]: 

# Initialize the Logistic Regression model 

model = LogisticRegression(max_iter=5000)  # Increase max_iter value 



 

# Train the model on the train data 

model.fit(X_train, y_train) 

Out[5]: 

LogisticRegression 

LogisticRegression(max_iter=5000) 

In [6]: 

# Predict probabilities on the validation set 

y_pred_prob = model.predict_proba(X_valid)[:, 1] 

 

# Calculate ROC curve and AUC 

fpr, tpr, thresholds = roc_curve(y_valid, y_pred_prob) 

roc_auc = auc(fpr, tpr) 

 

print(f'ROC AUC Score: {roc_auc}') 

ROC AUC Score: 0.831987247786051 

In [7]: 

# Now, let's make predictions on the test data 

# Exclude 'id' column from test data 

test_predictions = model.predict_proba(test_data.drop(columns=['id']))[:, 1] 

 

# Create a submission DataFrame 

submission = pd.DataFrame({'id': test_data['id'], 'smoking': test_predictions}) 

 

# Save the submission to a CSV file 

submission.to_csv('submission.csv', index=False) 

 

Task2: Sentiment Analysis of Restaurant Reviews 

The purpose of this analysis is to build a prediction model to predict whether a review on the restaurant is 

positive or negative. To do so, we will work on Restaurant Review dataset, we will load it into predicitve 

algorithms Multinomial Naive Bayes, Bernoulli Naive Bayes and Logistic Regression. In the end, we 

hope to find a "best" model for predicting the review's sentiment. 

Dataset: Restaurant_Reviews.tsv is a dataset from Kaggle datasets which consists of 1000 reviews on a 

restaurant. 

To build a model to predict if review is positive or negative, following steps are performed. 

 Importing Dataset 

 Preprocessing Dataset 

 Vectorization 

 Training and Classification 

 Analysis Conclusion 

https://www.kaggle.com/hj5992/restaurantreviews


Importing Dataset 

Importing the Restaurant Review dataset using pandas library. 

In [1]: 

# Importing the libraries 

import numpy as np 

import pandas as pd 

In [2]: 

# Importing the dataset 

dataset = pd.read_csv('../input/Restaurant_Reviews.tsv', delimiter = '\t', quoting = 3) 

Preprocessing Dataset 

Each review undergoes through a preprocessing step, where all the vague information is removed. 

 Removing the Stopwords, numeric and speacial charecters. 

 Normalizing each review using the approach of stemming. 

In [3]: 

import re 

import nltk 

from nltk.corpus import stopwords 

from nltk.stem.porter import PorterStemmer 

corpus = [] 

for i in range(0, 1000): 

    review = re.sub('[^a-zA-Z]', ' ', dataset['Review'][i]) 

    review = review.lower() 

    review = review.split() 

    ps = PorterStemmer() 

    review = [ps.stem(word) for word in review if not word in set(stopwords.words('english'))] 

    review = ' '.join(review) 

    corpus.append(review) 

Vectorization 

From the cleaned dataset, potential features are extracted and are converted to numerical format. The 

vectorization techniques are used to convert textual data to numerical format. Using vectorization, a 

matrix is created where each column represents a feature and each row represents an individual review. 

In [4]: 

# Creating the Bag of Words model using CountVectorizer 

 

from sklearn.feature_extraction.text import CountVectorizer 

cv = CountVectorizer(max_features = 1500) 

X = cv.fit_transform(corpus).toarray() 

y = dataset.iloc[:, 1].values 

Training and Classification 

Further the data is splitted into training and testing set using Cross Validation technique. This data is used 

as input to classification algorithm. 



Classification Algorithms: 

Algorithms like Decision tree, Support Vector Machine, Logistic Regression, Naive Bayes were 

implemented and on comparing the evaluation metrics two of the algorithms gave better predictions than 

others. 

 Multinomial Naive Bayes 

 Bernoulli Naive Bayes 

 Logistic Regression 

In [5]: 

# Splitting the dataset into the Training set and Test set 

from sklearn.cross_validation import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 42) 

/opt/conda/lib/python3.6/site-packages/sklearn/cross_validation.py:41: DeprecationWarning: This module 

was deprecated in version 0.18 in favor of the model_selection module into which all the refactored 

classes and functions are moved. Also note that the interface of the new CV iterators are different from 

that of this module. This module will be removed in 0.20. 

  "This module will be removed in 0.20.", DeprecationWarning) 

Multinomial NB 

In [6]: 

# Multinomial NB 

 

# Fitting Naive Bayes to the Training set 

from sklearn.naive_bayes import MultinomialNB 

classifier = MultinomialNB(alpha=0.1) 

classifier.fit(X_train, y_train) 

 

# Predicting the Test set results 

y_pred = classifier.predict(X_test) 

 

# Making the Confusion Matrix 

from sklearn.metrics import confusion_matrix 

cm = confusion_matrix(y_test, y_pred) 

print ("Confusion Matrix:\n",cm) 

 

# Accuracy, Precision and Recall 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import precision_score 

from sklearn.metrics import recall_score 

score1 = accuracy_score(y_test,y_pred) 

score2 = precision_score(y_test,y_pred) 

score3= recall_score(y_test,y_pred) 

print("\n") 

print("Accuracy is ",round(score1*100,2),"%") 

print("Precision is ",round(score2,2)) 

print("Recall is ",round(score3,2)) 



Confusion Matrix: 

 [[119  33] 

 [ 34 114]] 

 

 

Accuracy is  77.67 % 

Precision is  0.78 

Recall is  0.77 

Bernoulli NB 

In [7]: 

# Bernoulli NB 

 

# Fitting Naive Bayes to the Training set 

from sklearn.naive_bayes import BernoulliNB 

classifier = BernoulliNB(alpha=0.8) 

classifier.fit(X_train, y_train) 

 

# Predicting the Test set results 

y_pred = classifier.predict(X_test) 

 

# Making the Confusion Matrix 

from sklearn.metrics import confusion_matrix 

cm = confusion_matrix(y_test, y_pred) 

print ("Confusion Matrix:\n",cm) 

 

# Accuracy, Precision and Recall 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import precision_score 

from sklearn.metrics import recall_score 

score1 = accuracy_score(y_test,y_pred) 

score2 = precision_score(y_test,y_pred) 

score3= recall_score(y_test,y_pred) 

print("\n") 

print("Accuracy is ",round(score1*100,2),"%") 

print("Precision is ",round(score2,2)) 

print("Recall is ",round(score3,2)) 

Confusion Matrix: 

 [[115  37] 

 [ 32 116]] 

 

 

Accuracy is  77.0 % 

Precision is  0.76 

Recall is  0.78 

Logistic Regression 

In [8]: 



# Logistic Regression 

 

# Fitting Logistic Regression to the Training set 

from sklearn import linear_model 

classifier = linear_model.LogisticRegression(C=1.5) 

classifier.fit(X_train, y_train) 

 

# Predicting the Test set results 

y_pred = classifier.predict(X_test) 

 

# Making the Confusion Matrix 

from sklearn.metrics import confusion_matrix 

cm = confusion_matrix(y_test, y_pred) 

print ("Confusion Matrix:\n",cm) 

 

# Accuracy, Precision and Recall 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import precision_score 

from sklearn.metrics import recall_score 

score1 = accuracy_score(y_test,y_pred) 

score2 = precision_score(y_test,y_pred) 

score3= recall_score(y_test,y_pred) 

print("\n") 

print("Accuracy is ",round(score1*100,2),"%") 

print("Precision is ",round(score2,2)) 

print("Recall is ",round(score3,2)) 

Confusion Matrix: 

 [[125  27] 

 [ 43 105]] 

 

 

Accuracy is  76.67 % 

Precision is  0.8 

Recall is  0.71 

Analysis and Conclusion 

In this study, an attempt has been made to classify sentiment analysis for restaurant reviews using 

machine learning techniques. Two algorithms namely Multinomial Naive Bayes and Bernoulli Naive 

Bayes are implemented. 

Evaluation metrics used here are accuracy, precision and recall. 

Using Multinomial Naive Bayes, 

 Accuracy of prediction is 77.67%. 

 Precision of prediction is 0.78. 

 Recall of prediction is 0.77. 



Using Bernoulli Naive Bayes, 

 Accuracy of prediction is 77.0%. 

 Precision of prediction is 0.76. 

 Recall of prediction is 0.78. 

Using Logistic Regression, 

 Accuracy of prediction is 76.67%. 

 Precision of prediction is 0.8. 

 Recall of prediction is 0.71. 

From the above results, Multinomial Naive Bayes is slightly better method compared to Bernoulli Naive 

Bayes and Logistic Regression, with 77.67% accuracy which means the model built for the prediction of 

sentiment of the restaurant review gives 77. 

Task3:  MANIPULATING DATA FRAMES WITH PANDAS 

# read data 

data = pd.read_csv('../input/pokemon.csv') 

data= data.set_index("#") 

data.head() 

Out[81]: 

 

Name 
Type 

1 

Type 

2 

H

P 

Attac

k 

Defens

e 

Sp. 

At

k 

Sp. 

De

f 

Spee

d 

Generatio

n 

Legendar

y 

# 

           

1 Bulbasaur 
Gras

s 

Poiso

n 
45 49 49 65 65 45 1 False 

2 Ivysaur 
Gras

s 

Poiso

n 
60 62 63 80 80 60 1 False 

3 Venusaur 
Gras

s 

Poiso

n 
80 82 83 

10

0 

10

0 
80 1 False 



 

Name 
Type 

1 

Type 

2 

H

P 

Attac

k 

Defens

e 

Sp. 

At

k 

Sp. 

De

f 

Spee

d 

Generatio

n 

Legendar

y 

# 

           

4 
Mega 

Venusaur 

Gras

s 

Poiso

n 
80 100 123 

12

2 

12

0 
80 1 False 

5 
Charmande

r 
Fire NaN 39 52 43 60 50 65 1 False 

In [82]: 

# indexing using square brackets  

data["HP"][1] 

Out[82]: 

45 

In [83]: 

# using column attribute and row label 

data.HP[1] 

Out[83]: 

45 

In [84]: 

# using loc accessor 

data.loc[1,["HP"]] 

Out[84]: 

HP    45 

Name: 1, dtype: object 

In [85]: 

# Selecting only some columns 

data[["HP","Attack"]] 

Out[85]: 

 

HP Attack 

# 

  



 

HP Attack 

# 

  

1 45 49 

2 60 62 

3 80 82 

4 80 100 

5 39 52 

6 58 64 

7 78 84 

8 78 130 

9 78 104 

10 44 48 



 

HP Attack 

# 

  

11 59 63 

12 79 83 

13 79 103 

14 45 30 

15 50 20 

16 60 45 

17 40 35 

18 45 25 

19 65 90 

20 65 150 



 

HP Attack 

# 

  

21 40 45 

22 63 60 

23 83 80 

24 83 80 

25 30 56 

26 55 81 

27 40 60 

28 65 90 

29 35 60 

30 60 85 



 

HP Attack 

# 

  

... ... ... 

771 95 65 

772 78 92 

773 67 58 

774 50 50 

775 45 50 

776 68 75 

777 90 100 

778 57 80 

779 43 70 



 

HP Attack 

# 

  

780 85 110 

781 49 66 

782 44 66 

783 54 66 

784 59 66 

785 65 90 

786 55 85 

787 75 95 

788 85 100 

789 55 69 



 

HP Attack 

# 

  

790 95 117 

791 40 30 

792 85 70 

793 126 131 

794 126 131 

795 108 100 

796 50 100 

797 50 160 

798 80 110 

799 80 160 



 

HP Attack 

# 

  

800 80 110 

800 rows × 2 columns 

 

SLICING DATA FRAME 

 Difference between selecting columns 

 Series and data frames 

 Slicing and indexing series 

 Reverse slicing 

 From something to end 

In [86]: 

# Difference between selecting columns: series and dataframes 

print(type(data["HP"]))     # series 

print(type(data[["HP"]]))   # data frames 

<class 'pandas.core.series.Series'> 

<class 'pandas.core.frame.DataFrame'> 

In [87]: 

# Slicing and indexing series 

data.loc[1:10,"HP":"Defense"]   # 10 and "Defense" are inclusive 

Out[87]: 

 

HP Attack Defense 

# 

   

1 45 49 49 



 

HP Attack Defense 

# 

   

2 60 62 63 

3 80 82 83 

4 80 100 123 

5 39 52 43 

6 58 64 58 

7 78 84 78 

8 78 130 111 

9 78 104 78 

10 44 48 65 

In [88]: 

# Reverse slicing  

data.loc[10:1:-1,"HP":"Defense"]  

Out[88]: 



 

HP Attack Defense 

# 

   

10 44 48 65 

9 78 104 78 

8 78 130 111 

7 78 84 78 

6 58 64 58 

5 39 52 43 

4 80 100 123 

3 80 82 83 

2 60 62 63 

1 45 49 49 

In [89]: 

# From something to end 

data.loc[1:10,"Speed":]  



Out[89]: 

 

Speed Generation Legendary 

# 

   

1 45 1 False 

2 60 1 False 

3 80 1 False 

4 80 1 False 

5 65 1 False 

6 80 1 False 

7 100 1 False 

8 100 1 False 

9 100 1 False 

10 43 1 False 

 



FILTERING DATA FRAMES 

Creating boolean series Combining filters Filtering column based others 

In [90]: 

# Creating boolean series 

boolean = data.HP > 200 

data[boolean] 

Out[90]: 

 

Name Type 1 
Typ

e 2 
HP 

Attac

k 

Defens

e 

Sp. 

At

k 

Sp. 

De

f 

Spee

d 

Generatio

n 

Legendar

y 

# 

           

12

2 

Chanse

y 

Norma

l 
NaN 

25

0 
5 5 35 

10

5 
50 1 False 

26

2 
Blissey 

Norma

l 
NaN 

25

5 
10 10 75 

13

5 
55 2 False 

In [91]: 

# Combining filters 

first_filter = data.HP > 150 

second_filter = data.Speed > 35 

data[first_filter & second_filter] 

Out[91]: 

 

Name Type 1 
Typ

e 2 
HP 

Attac

k 

Defens

e 

Sp. 

At

k 

Sp. 

De

f 

Spee

d 

Generatio

n 

Legendar

y 

# 

           

12

2 
Chansey 

Norma

l 
NaN 

25

0 
5 5 35 

10

5 
50 1 False 



 

Name Type 1 
Typ

e 2 
HP 

Attac

k 

Defens

e 

Sp. 

At

k 

Sp. 

De

f 

Spee

d 

Generatio

n 

Legendar

y 

# 

           

26

2 
Blissey 

Norma

l 
NaN 

25

5 
10 10 75 

13

5 
55 2 False 

35

2 
Wailord Water NaN 

17

0 
90 45 90 45 60 3 False 

65

6 

Alomomol

a 
Water NaN 

16

5 
75 80 40 45 65 5 False 

In [92]: 

# Filtering column based others 

data.HP[data.Speed<15] 

Out[92]: 

# 

231     20 

360     45 

487     50 

496    135 

659     44 

Name: HP, dtype: int64 

 

TRANSFORMING DATA 

 Plain python functions 

 Lambda function: to apply arbitrary python function to every element 

 Defining column using other columns 

In [93]: 

# Plain python functions 

def div(n): 

    return n/2 



data.HP.apply(div) 

Out[93]: 

# 

1      22.5 

2      30.0 

3      40.0 

4      40.0 

5      19.5 

6      29.0 

7      39.0 

8      39.0 

9      39.0 

10     22.0 

11     29.5 

12     39.5 

13     39.5 

14     22.5 

15     25.0 

16     30.0 

17     20.0 

18     22.5 

19     32.5 

20     32.5 

21     20.0 

22     31.5 

23     41.5 

24     41.5 

25     15.0 

26     27.5 

27     20.0 

28     32.5 

29     17.5 

30     30.0 

       ...  

771    47.5 

772    39.0 

773    33.5 

774    25.0 

775    22.5 

776    34.0 

777    45.0 

778    28.5 

779    21.5 

780    42.5 

781    24.5 

782    22.0 

783    27.0 



784    29.5 

785    32.5 

786    27.5 

787    37.5 

788    42.5 

789    27.5 

790    47.5 

791    20.0 

792    42.5 

793    63.0 

794    63.0 

795    54.0 

796    25.0 

797    25.0 

798    40.0 

799    40.0 

800    40.0 

Name: HP, Length: 800, dtype: float64 

In [94]: 

# Or we can use lambda function 

data.HP.apply(lambda n : n/2) 

Out[94]: 

# 

1      22.5 

2      30.0 

3      40.0 

4      40.0 

5      19.5 

6      29.0 

7      39.0 

8      39.0 

9      39.0 

10     22.0 

11     29.5 

12     39.5 

13     39.5 

14     22.5 

15     25.0 

16     30.0 

17     20.0 

18     22.5 

19     32.5 

20     32.5 

21     20.0 

22     31.5 

23     41.5 

24     41.5 



25     15.0 

26     27.5 

27     20.0 

28     32.5 

29     17.5 

30     30.0 

       ...  

771    47.5 

772    39.0 

773    33.5 

774    25.0 

775    22.5 

776    34.0 

777    45.0 

778    28.5 

779    21.5 

780    42.5 

781    24.5 

782    22.0 

783    27.0 

784    29.5 

785    32.5 

786    27.5 

787    37.5 

788    42.5 

789    27.5 

790    47.5 

791    20.0 

792    42.5 

793    63.0 

794    63.0 

795    54.0 

796    25.0 

797    25.0 

798    40.0 

799    40.0 

800    40.0 

Name: HP, Length: 800, dtype: float64 

In [95]: 

# Defining column using other columns 

data["total_power"] = data.Attack + data.Defense 

data.head() 

Out[95]: 



 

Name 
Typ

e 1 

Type 

2 

H

P 

Attac

k 

Defen

se 

Sp

. 

At

k 

Sp

. 

De

f 

Spee

d 

Generati

on 

Legenda

ry 

total_pow

er 

# 

            

1 
Bulbasa

ur 

Gras

s 

Poiso

n 
45 49 49 65 65 45 1 False 98 

2 Ivysaur 
Gras

s 

Poiso

n 
60 62 63 80 80 
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