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Abstract 

 In this paper we introduce a subclass of analytic functions associated with 
thk  root transforms. We study the 

coefficient bounds, distortion properties, extreme points, radius of starlikeness, convexity, close to convexity and integral 

transformations for the function f in this class. The results of this paper generalize many earlier results in this 

direction. 
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1. Introduction 

Let  be the class of all functions f  analytic in the open unit disc  1:  zCz  normalized by 

  00 f  and   10' f . Let f be a function in the class  of the form  
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Let S be the subclass of  consisting of univalent functions. Let  *S  and  C  be the classes of 

functions starlike of order  and convex of order  10    respectively, defined as follows 
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Let T be the subclass of S consisting of function f of the form  
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A function Tf  is called as a function with negative coefficients and introduced by Silverman [10]. He 

investigated the starlike and convex functions of order   with negative coefficients. These classes are 

denoted by  

TS  and  TC  respectively. Goodman [2, 3] introduced the concept of uniform starlikeness 

and uniform convexity for functions in A .A function f is said to be uniformly convex if f is convex and has 

the property that each circular arc  contained in  , with center   is also in  , the arc  f  is convex. 

Similarly the function f is uniformly starlike if f is starlike and has the property that for each circular arc 

is contained in   with center   is also in  , the arc  f  is starlike. The classes of functions consisting of 

uniformly convex and starlike functions are denoted by UCV and UST respectively. 
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 The following analytic characterization of UCV and UST are obtained by Goodman[2,3]. The class of 

uniformly convex functions (UCV) consists of functions Af  satisfying 
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The class of uniformly starlike functions (UST) consists of functions Af  satisfying 
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Ronning [7], Ma and Minda [5] have individually given the following one variable characterization for the 

function f in UCV and UST classes. 

A function Af  is said to be in the class UCV if and only if  
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Let the class of functions f for which there is a uniformly convex function F  such that  

   zzFzf ' , is denoted by
pS . It is easy to see that the function f is in 

pS if and only if  
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Recently many research workers has extended or generalized the classes (UST), UCV and the   

class pS . Recently S.Shams, S.R.Kulkarni and J.M.Jahangiri [9] introduced the classes  ,kSD  and 

 ,kKD  to be the classes of functions. The 
thk  root transformation of an analytic function   Azf   is 

given by Af  satisfying the conditions 
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respectively for some 0k and  10   . It is noted that    ,kKDzf   if and only if  

   ,kDSzf  .they have shown some sufficient conditions for f to be in the classes  ,kDS  and 

 ,kDK . 

 By imposing the condition  k0 , S.Owa, Y.Polatoglu and E.Yavuz [6] obtained coefficient 

inequalities, distortion properties for the functions in the classes  ,kDS  and  ,kDK . 

 Srivastava, Shanmugam, Ramchandran and Sivasubramanian [11] defined and studied the class 

  ,,,U to be the lass of functions Tf  for which 
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They have obtained the coefficient inequalities, necessary and sufficient conditions, distortion properties, 

convex linear combinations, radius of starlikeness, convexity and integral operators for the functions in this 

class. 
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Here for 1k ,     zfzfT k  .Also the 
thk  root transformation of an analytic function Tf   is given by  

   nbzbzzfT nk
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In the present paper we define a subclass of analytic functions associated with the 
thk  root transformation and 

study the necessary and sufficient conditions, coefficient bounds, distortion properties, radius of starlikeness, 

convexity and integral transformations for the function in this class. 

Definition 1.1 Let   ,,,R  be the class of functions TfT k   satisfying the condition 
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For some 1,0,0  k   and 10   . 

Remarks: Here     TkRkRT   ,,,,,, . It can be seen that 

1.     ,,,1,, TT RR  , defined and studied by K.Saroja [8]. 

2.  0,,,0 kRT   gives a class  USF  associated with the 
thk  root transformationof f . 

3.     USFRT 0,1,,0  defined and studied by S.Kanas and A.Wisniowska [12]. 

4.  ,,0,0 kRT  gives a class  *

TS  functions associated with the 
thk  root transformation of  zf . 

5.     *,1,0,0 TT SR   defined and studied by H.Silverman [10]. 

 

2. A Characterization theorem and resulting coefficient estimates 

We first find a sufficient condition for the functions   AzfT k  to be in the class   ,,, kR . 

We give characterization of the class   ,,, kRT  by finding a necessary and sufficient condition for the 

function f  to be in   ,,, kRT . This characterization also yields coefficient estimates for the function in 

this class. 

Theorem 2.1 If   AzfT k   and satisfies the condition  
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for some 1,0,0  k and 10   then     ,,, kRzfT k  . 

Proof: Let   AzfT k  and satisfies the condition (10). To prove that  zfT k
 is in the class   ,,, kR . 

Applying the principle  
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For the function  
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By setting            zfTeezfTzzfTzzG kiikk    1''' 2
 the above inequality (12) becomes 

             zfTzGzfTzG kk   11   (13) 

Replacing       ', zfTzzfT kk
and     ''2 zfTz k

with their equivalent series expansions in (13), we get 
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Similarly we obtain
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Therefore from the inequalities (12) & (13), we have 
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0  (Using the result in (10)) 
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Hence       ,,, kRzfT k   

Theorem 2.2 A necessary and sufficient condition for a function    TzfT k  to be in the class 

  ,,, kRT  is that 
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Proof: In view of Theorem (2.1) it is sufficient to show that   zfT k
satisfies the condition (8). 

Suppose that    
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By setting 10  rz and choosing the values of z on the real axis then from the inequality (10), we have 
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Since   1  ii eee  

The above inequality (16) reduces to  
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Upon clearing the denominator and letting 1r  in (15) we get 
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which is the result in (10). Hence the Theorem. 

Corollary 2.3 If     ,,, kRzfT T

k   then 
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This result is sharp for each n  for functions of the form 
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3. Distortion and Covering theorems for the function   ,,, kRf T  

Theorem 3.1.If the function     ,,, kRzfT T

k  , then 
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The equality in (19) is attained for the function   zfT k
 is given by  
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Proof: Since     ,,, kRzfT T

k  , from the inequality (10), we have 
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This gives the right hand side of (20). Similarly 
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This is the left hand side of (19). It can be easily seen that the function  zfT k
 defined by (20) is the 

extremal function for the result in (19). 

Theorem 3.2If      ,,, kRzfT T

k  , then 
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The equality in (24) holds true for the function   zfT k
 given by (20). 

Proof:Since      ,,, kRzfT T

k  , we have 
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The result in (24) holds true from (25) & (26) and using the simple consequence of(23) given by 
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The result is sharp for the function f given in (22). 

4. Closure Theorem for the class   ,,, kRT  
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In this section we prove that the class   ,,, kRT is closed under convex linear combinations. 

Theorem 4.1 If    zzfT k 0
and  
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Thus the coefficients of   zfT k
 satisfy the inequality (10). Hence from the Theorem (2.2) it follows that 
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 . This completes the proof of the theorem. 

Theorem 4.2. The class   ,,, kRT  is closed under convex linear combinations. 

Proof: Suppose that each of the function  
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is in the class   ,,, kRT . We need to prove that the function  zH  given by 
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Consider 
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Thus from the Theorem (2.2)     ,,, kRzH T .Hence the class   ,,, kRT  is closed under convex 

linear combinations. 

 

5. Radii of starlikeness, convexity and close to convexity for the functions f in the class

  ,,, kRT . 

In this section we determine radius of starlikeness, convexity and close to convexity for the function

     ,,, kRzfT T
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And the result is sharp. 

Proof:Suppose      ,,, kRzfT T
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 in the L.H.S of (25) with their equivalent expressions in series, we get 
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Since for      ,,, kRzfT T

k  , from Theorem (2.2), we have 

     
 

1
1

111
1

1



















 nk

n

b
nknk




 

The condition (28) will be satisfied if  
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Setting   ,,,,1 krz  , the result of the theorem follows. And the result is sharp for each n for the 

functions   zfT n

k
given in (16). 

Theorem 5.2. If      ,,, kRzfT T

k  then  zfT k
 is close to convex of order  10    in 
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Replacing   'zfT k
 in the L.H.S of (30) with their equivalent expressions in series then we get 
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Since for      ,,, kRzfT T

k  , from Theorem (2.2), we have 
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Setting   ,,,,2 krz  , the result of the Theorem follows. And the result is sharp for each n  for the 

functions   zfT n

k
 given in(18). 

Theorem 5.3. If      ,,, kRzfT T

k  then  zfT k
 is close to convex of order  10    in 

  ,,,,3 krz   where 
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And the result is sharp. 

Proof: Suppose      ,,, kRzfT T

k  .It is sufficient to show that 
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 for [ 10   ,   ,,,,3 krz  ]                                                        (32) 

Replacing   'zfT k
 in the L.H.S of (30) with their equivalent expressions in series then we get 
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Since for     ,,, kRzfT T
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The condition (33) will be satisfied if  
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Setting   ,,,,3 krz  , the result of the Theorem follows. And the result is sharp for each n  for the 

functions   zfT n

k
in (16). 

6. Integral Operators 

In this section we consider the integral operators for func tion     ,,, kRzfT T

k   . 

Theorem 6.1:If     ,,, kRzfT T

k   then the function   zfT k
 defined by  
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Is also in   ,,, kRT . 
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Proof: Suppose     ,,, kRzfT T

k   , we have 
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Hence the Theorem. 
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