Coefficient Inequalities for Transforms of Analytic Functions with Negative Coefficients

R.B.Sharma, K.Saroja*, M.Haripriya
Department of Mathematics,Kakatiya University, Warangal, Telangana State. India.
*Department of Mathematics, Women's Degree College, Guntur,Andhra Pradesh, India.
*Corresponding author

Abstract

In this paper we introduce a subclass of analytic functions associated with $k^{\text {th }}$ root transforms. We study the coefficient bounds, distortion properties, extreme points, radius of starlikeness, convexity, close to convexity and integral transformations for the function f in this class. The results of this paper generalize many earlier results in this direction.

A.M.S: M.S.C (2010): Primary 30C45, 30C50; Secondary 30C80.

Keywords: Analytic functions, Convex function, $k^{\text {th }}$ root transformation, Negative coefficients, Starlike functions, α - Uniformly starlike functions.

1. Introduction

Let A be the class of all functions f analytic in the open unit disc $\Delta=[z \in C:|z|<1]$ normalized by $f(0)=0$ and $f^{\prime}(0)=1$. Let f be a function in the class A of the form
$f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} ; \forall z \in \Delta$
Let S be the subclass of A consisting of univalent functions. Let $S^{*}(\beta)$ and $C(\beta)$ be the classes of functions starlike of order β and convex of order $\beta(0 \leq \beta \leq 1)$ respectively, defined as follows
$\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta$
$\mathfrak{R e}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\beta$
Let T be the subclass of S consisting of function f of the form
$f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n} ; \quad a_{n} \geq 0$
A function $f \in T$ is called as a function with negative coefficients and introduced by Silverman [10]. He investigated the starlike and convex functions of order β with negative coefficients. These classes are denoted by $S_{T}^{*}(\beta)$ and $C_{T}(\beta)$ respectively. Goodman [2,3] introduced the concept of uniform starlikeness and uniform convexity for functions in A.A function f is said to be uniformly convex if f is convex and has the property that each circular arc γ contained in Δ, with center ξ is also in Δ, the arc $f(\gamma)$ is convex. Similarly the function f is uniformly starlike if f is starlike and has the property that for each circular arc γ is contained in Δ with center ξ is also in Δ, the arc $f(\gamma)$ is starlike. The classes of functions consisting of uniformly convex and starlike functions are denoted by UCV and UST respectively.

The following analytic characterization of UCV and UST are obtained by Goodman[2,3]. The class of uniformly convex functions (UCV) consists of functions $f \in A$ satisfying
$\mathfrak{R e}\left\{1+(z-\xi) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq 0, \quad \forall z, \xi \in \Delta$
The class of uniformly starlike functions (UST) consists of functions $f \in A$ satisfying
$\mathfrak{R} e\left\{\frac{(z-\xi) f^{\prime}(z)}{f(z)-f(\xi)}\right\} \geq 0, \quad \forall z, \xi \in \Delta$
Ronning [7], Ma and Minda [5] have individually given the following one variable characterization for the function f in UCV and UST classes.
A function $f \in A$ is said to be in the class UCV if and only if
$\mathfrak{R e}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \quad \forall z \in \Delta$
Let the class of functions f for which there is a uniformly convex function F such that $f(z)=z F^{\prime}(z)$, is denoted by S_{p}. It is easy to see that the function f is in S_{p} if and only if
$\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\left|\frac{\mid z f^{\prime}(z)}{f(z)}-1\right| \quad \forall z \in \Delta$
Recently many research workers has extended or generalized the classes (UST), UCV and the class S_{p}. Recently S.Shams, S.R.Kulkarni and J.M.Jahangiri [9] introduced the classes $S D(k, \beta)$ and $K D(k, \beta)$ to be the classes of functions. The $k^{\text {th }}$ root transformation of an analytic function $f(z) \in A$ is given by $f \in A$ satisfying the conditions
$\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>k\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|+\beta$
$\mathfrak{R e}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>k\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|+\beta$
respectively for some $k \geq 0$ and $\beta(0 \leq \beta<1)$. It is noted that $f(z) \in K D(k, \beta)$ if and only if $f(z) \in S D(k, \beta)$.they have shown some sufficient conditions for f to be in the classes $S D(k, \beta)$ and $K D(k, \beta)$.

By imposing the condition $0 \leq k \leq \beta$, S.Owa, Y.Polatoglu and E.Yavuz [6] obtained coefficient inequalities, distortion properties for the functions in the classes $S D(k, \beta)$ and $K D(k, \beta)$.

Srivastava, Shanmugam, Ramchandran and Sivasubramanian [11] defined and studied the class $U(\lambda, \alpha, \beta, \kappa)$ to be the lass of functions $f \in T$ for which
$\mathfrak{R e}\left\{\frac{z F^{\prime}(z)}{F(z)}\right\}>k\left|\frac{z F^{\prime}(z)}{F(z)}-1\right|+\beta$
$(0 \geq \alpha \leq \lambda \leq 1),(0 \leq \beta<1)$ and $k \geq 0$, where
$F(z)=\lambda \alpha z^{2} f^{\prime \prime}(z)+(\lambda-\alpha) z f^{\prime}(z)+(1-\lambda+\alpha) f(z)$

They have obtained the coefficient inequalities, necessary and sufficient conditions, distortion properties, convex linear combinations, radius of starlikeness, convexity and integral operators for the functions in this class.
$T^{k}(f(z))=\left[f\left(z^{k}\right)\right]^{\frac{1}{k}}=z+\sum_{n=1}^{\infty} b_{n k+1} z^{n k+1}$
Here for $k=1, T^{k}(f(z))=f(z)$.Also the $k^{\text {th }}$ root transformation of an analytic function $f \in T$ is given by
$T^{k}(f(z))=z-\sum_{n=1}^{\infty} b_{n k+1} z^{n k+1} ; \quad b_{n k+1} \geq 0 \forall n$
In the present paper we define a subclass of analytic functions associated with the $k^{\text {th }}$ root transformation and study the necessary and sufficient conditions, coefficient bounds, distortion properties, radius of starlikeness, convexity and integral transformations for the function in this class.
Definition 1.1 Let $R(\lambda, \alpha, \kappa, \beta)$ be the class of functions $T^{k} f \in T$ satisfying the condition
$\mathfrak{R e}\left\{\frac{z\left[T^{k}(f(z))\right]^{\prime}+\lambda z^{2}\left[T^{k}(f(z))\right]^{\prime \prime}}{T^{k}(f(z))}\right\}>\alpha\left|\frac{z\left[T^{k}(f(z))\right]^{\prime}+\lambda z^{2}\left[T^{k}(f(z))\right]^{\prime \prime}}{T^{k}(f(z))}-1\right|+\beta$
For some $\lambda \geq 0, \alpha \geq 0, k \geq 1$ and $0 \leq \beta<1$.
Remarks: Here $R_{T}(\lambda, \alpha, k, \beta)=R(\lambda, \alpha, k, \beta) \cap T$. It can be seen that

1. $\quad R_{T}(\lambda, \alpha, 1, \beta)=R_{T}(\lambda, \alpha, \beta)$, defined and studied by K.Saroja [8].
2. $\quad R_{T}(0, \alpha, k, 0)$ gives a class $\operatorname{USF}(\alpha)$ associated with the $k^{\text {th }}$ root transformationof f.
3. $\quad R_{T}(0, \alpha, 1,0)=\operatorname{USF}(\alpha)$ defined and studied by S.Kanas and A.Wisniowska [12].
4. $\quad R_{T}(0,0, k, \beta)$ gives a class $S_{T}^{*}(\beta)$ functions associated with the $k^{\text {th }}$ root transformation of $f(z)$.
5. $\quad R_{T}(0,0,1, \beta)=S_{T}^{*}(\beta)$ defined and studied by H.Silverman [10].

2. A Characterization theorem and resulting coefficient estimates

We first find a sufficient condition for the functions $T^{k} f(z) \in A$ to be in the class $R(\lambda, \alpha, k, \beta)$.
We give characterization of the class $R_{T}(\lambda, \alpha, k, \beta)$ by finding a necessary and sufficient condition for the function f to be in $R_{T}(\lambda, \alpha, k, \beta)$. This characterization also yields coefficient estimates for the function in this class.
Theorem 2.1 If $T^{k} f(z) \in A$ and satisfies the condition
$\sum_{n=1}^{\infty}[(n k+1)(1+\lambda n k)(1+\alpha)-(\alpha+\beta)]\left|b_{n k+1}\right| \leq 1-\beta$
for some $\lambda \geq 0, \alpha \geq 0, k \geq 1$ and $0 \leq \beta<1$ then $T^{k} f(z) \in R(\lambda, \alpha, k, \beta)$.
Proof: Let $T^{k} f(z) \in A$ and satisfies the condition (10). To prove that $T^{k} f(z)$ is in the class $R(\lambda, \alpha, k, \beta)$. Applying the principle
$\mathfrak{R e}(w)>\alpha|w-1|+\beta$
$\Leftrightarrow \mathfrak{R} e\left(w\left(1+\alpha e^{i \theta}\right)-\alpha e^{i \theta}\right)>\beta(-\pi \leq \theta \leq \pi, 0 \leq \beta<1, \alpha \geq 0)$
For the function $w(z)=\frac{z\left[T^{k}(f(z))\right]^{\prime}+\lambda z^{2}\left[T^{k}(f(z))\right]^{\prime \prime}}{T^{k}(f(z))}$ on R.H.S we get
$\mathfrak{R e}\left\{\frac{\left\{z\left[T^{k}(f(z))\right]+\lambda z^{2}\left[T^{k}(f(z))\right] "\right\}\left\{1+\alpha e^{i \theta}\right\}-\alpha e^{i \theta} T^{k}(f(z))}{T^{k}(f(z))}\right\}>\beta$
By setting $G(z)=\left\{z\left[T^{k} f(z)\right]^{\prime}+\lambda z^{2}\left[T^{k} f(z)\right]^{\prime}\right\}\left\{1+\alpha e^{i \theta}\right\}-\alpha e^{i \theta} T^{k} f(z)$ the above inequality (12) becomes $\left|G(z)+(1-\beta) T^{k}(f(z))\right|>\left|G(z)-(1+\beta) T^{k}(f(z))\right|$
Replacing $T^{k}(f(z)), z\left[T^{k}(f(z))\right] '$ and $z^{2}\left[T^{k}(f(z))\right] '$ ' with their equivalent series expansions in (13), we get $\mid G(z)+(1-\beta) T^{k}(f(z) \mid$
$=\left|(2-\beta) z+\sum_{n=1}^{\infty}\left\{[(n k+1)(1+\lambda n k)+(1-\beta)]+\alpha e^{i \theta}[(n k+1)(1+\lambda n k)-1]\right\} b_{n k+1} z^{n k+1}\right|$
$\geq(2-\beta)|z|-\sum_{n=1}^{\infty}[(n k+1)(1+\lambda n k)+(1-\beta)]\left|b_{n k+1}\right|\left|z^{n k+1}\right|-\alpha \sum_{n=1}^{\infty}[(n k+1)(1+\lambda n k)-1]\left|b_{n k+1}\right|\left|z^{n k+1}\right|$
Similarly we obtain

$$
\begin{align*}
& \left|G(z)-(1+\beta) T^{k}(f(z))\right|=\left|\beta z-\sum_{n=1}^{\infty}\left\{[(n k+1)(1+\lambda n k)-(1+\beta)]+\alpha e^{i \theta}[(n k+1)(1+\lambda n k)-1]\right\} b_{n k+1} z^{n k+1}\right| \\
& \leq \beta|z|+\sum_{n=1}^{\infty}[(n k+1)(1+\lambda n k)-(1+\beta)] b_{n k+1}| | z^{n k+1}\left|+\alpha \sum_{n=1}^{\infty}[(n k+1)(1+\lambda n k)-1]\right| b_{n k+1}| | z^{n k+1} \mid \tag{15}
\end{align*}
$$

Therefore from the inequalities (12) \& (13), we have
$\left|G(z)+(1-\beta) T^{k}(f(z))\right|-\mid G(z)-(1+\beta) T^{k}(f(z) \mid$
$\geq 2(1-\beta)-2 \sum_{n=1}^{\infty}[(n k+1)(1+\lambda n k)(1+\alpha)-(\alpha+\beta)]\left|b_{n k+1}\right|$
≥ 0 (Using the result in (10))
$\mathfrak{R e}\left\{\frac{z\left[T^{k}(f(z))\right]^{\prime}+\lambda z^{2}\left[T^{k}(f(z))\right]^{\prime \prime}}{\left[T^{k}(f(z))\right]}\right\}>k\left|\frac{z\left[T^{k}(f(z))\right]^{\prime}+\lambda z^{2}\left[T^{k}(f(z))\right]^{\prime \prime}}{\left[T^{k}(f(z))\right]}-1\right|+\beta$
Hence $\left[T^{k}(f(z))\right] \in R(\lambda, \alpha, k, \beta)$
Theorem 2.2 A necessary and sufficient condition for a function $T^{k}(f(z)) \in T$ to be in the class $R_{T}(\lambda, \alpha, k, \beta)$ is that
$\sum_{n=1}^{\infty}\left[(n k+1)(1+\lambda n k)(1+\alpha)-(\alpha+\beta) b_{n k+1} \leq(1-\beta)\right.$
for some $\lambda \geq 0, \alpha \geq 0, k \geq 1$ and $0 \leq \beta<1$.
Proof: In view of Theorem (2.1) it is sufficient to show that $T^{k}(f(z))$ satisfies the condition (8).
Suppose that $T^{k}(f(z))=z-\sum_{n=1}^{\infty} b_{n k+1} z^{n k+1}$ is in $R_{T}(\lambda, \alpha, k, \beta)$.
By setting $0 \leq|z|=r<1$ and choosing the values of z on the real axis then from the inequality (10), we have

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{r-\sum_{n=1}^{\infty}\left\{n k(1+\lambda(n k+1))+\alpha e^{i \theta}[n k(1+\lambda(n k+1))]-1\right\} b_{n k+1} r^{n k+1}}{r-\sum_{n=1}^{\infty} b_{n k+1} r^{n k+1}}\right\}>\beta \tag{16}
\end{equation*}
$$

Since $\mathfrak{R e}\left(-e^{i \theta}\right) \geq-\left|e^{i \theta}\right|=-1$
The above inequality (16) reduces to
$\mathfrak{R} e\left\{\frac{(1-\beta) r-\sum_{n=1}^{\infty}\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\} b_{n k+1} r^{n k+1}}{r-\sum_{n=1}^{\infty} b_{n k+1} r^{n k+1}}\right\} \geq 0$
Upon clearing the denominator and letting $r \rightarrow 1$ in (15) we get
$\sum_{n=1}^{\infty}\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\} b_{n k+1} \leq(1-\beta)$
which is the result in (10). Hence the Theorem.
Corollary 2.3 If $T^{k} f(z) \in R_{T}(\lambda, \alpha, k, \beta)$ then

$$
b_{n k+1} \leq \frac{(1-\beta)}{\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\}} \forall n \geq 1
$$

This result is sharp for each n for functions of the form

$$
\begin{equation*}
T^{k} f_{n}(z)=z-\frac{(1-\beta)}{\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\}} z^{n k+1} \forall n \geq 1 \tag{18}
\end{equation*}
$$

3. Distortion and Covering theorems for the function $f \in R_{T}(\lambda, \alpha, k, \beta)$

Theorem 3.1.If the function $T^{k} f(z) \in R_{T}(\lambda, \alpha, k, \beta)$, then

$$
\begin{align*}
& r-\frac{(1-\beta)}{\{(k+1)(\lambda k+1)(1+\alpha)-(\alpha+\beta)\}} r^{k+1} \leq\left|T^{k} f(z)\right| \\
& \quad \leq r+\frac{(1-\beta)}{\{(k+1)(\lambda k+1)(1+\alpha)-(\alpha+\beta)\}} r^{k+1} ; \forall 0<|z|=r<1 \tag{19}
\end{align*}
$$

The equality in (19) is attained for the function $T^{k}(f(z))$ is given by

$$
\begin{equation*}
T^{k}(f(z))=z-\frac{(1-\beta)}{\{(k+1)(\lambda k+1)(1+\alpha)-(\alpha+\beta)\}} z^{k+1} \tag{20}
\end{equation*}
$$

Proof: Since $T^{k} f(z) \in R_{T}(\lambda, \alpha, k, \beta)$, from the inequality (10), we have
$\sum_{n=1}^{\infty}\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\} b_{n k+1} \leq(1-\beta)$
It can be easily seen that

$$
\begin{aligned}
\{(k+1)(\lambda k+1)(1+\alpha)-(\alpha+\beta)\} \sum_{n=1}^{\infty} b_{n k+1} & \leq \sum_{n=1}^{\infty}\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\} b_{n k+1} \\
& \leq(1-\beta)
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad \sum_{n=1}^{\infty} b_{n k+1} \leq \frac{(1-\beta)}{\{(k+1)(\lambda k+1)(1+\alpha)-(\alpha+\beta)\}} \tag{21}
\end{equation*}
$$

Consider

$$
\begin{align*}
\left|T^{k}(f(z))\right|=\left|z-\sum_{n=1}^{\infty} b_{n k+1} z^{n k+1}\right| & \leq|z|+\sum_{n=1}^{\infty} b_{n k+1}|z|^{n k+1} \\
& \leq r+\frac{(1-\beta)}{\{(k+1)(\lambda k+1)(1+\alpha)-(\alpha+\beta)\}} r^{k+1} \tag{22}
\end{align*}
$$

This gives the right hand side of (20). Similarly

$$
\begin{align*}
& \begin{aligned}
&\left|T^{k}(f(z))\right|=\left|z-\sum_{n=1}^{\infty} b_{n k+1} z^{n k+1}\right| \geq|z|-\sum_{n=1}^{\infty} b_{n k+1}|z|^{n k+1} \\
& \geq r-r^{k+1} \sum_{n=1}^{\infty} b_{n k+1} \\
& \geq r-\frac{(1-\beta)}{\{(k+1)(\lambda k+1)(1+\alpha)-(\alpha+\beta)\}} r^{k+1}
\end{aligned}
\end{align*}
$$

This is the left hand side of (19). It can be easily seen that the function $T^{k} f(z)$ defined by (20) is the extremal function for the result in (19).
Theorem 3.2If $T^{k}(f(z)) \in R_{T}(\lambda, \alpha, k, \beta)$, then

$$
\begin{align*}
1-\frac{(k+1)(1-\beta)}{\{(k+1)(\lambda k+1)(1+\alpha)-(\alpha+\beta)\}} r^{k} & \leq\left[T^{k}(f(z))\right] \\
& \leq 1+\frac{(k+1)(1-\beta)}{\{(k+1)(\lambda k+1)(1+\alpha)-(\alpha+\beta)\}} r^{k} ; \forall 0<|z|=r<1 \tag{24}
\end{align*}
$$

The equality in (24) holds true for the function $T^{k}(f(z))$ given by (20).
Proof:Since $T^{k}(f(z)) \in R_{T}(\lambda, \alpha, k, \beta)$, we have
$\left|\left[T^{k}(f(z))\right]^{\mid}\right| \leq 1+\sum_{n=1}^{\infty}(n k+1) b_{n k+1}|z|^{n k}$
$\leq 1+r^{k} \sum_{n=1}^{\infty}(n k+1) b_{n k+1}$
And
$\left|\left[T^{k}(f(z))\right]^{\prime}\right| \geq 1-\sum_{n=1}^{\infty}(n k+1) b_{n k+1}|z|^{n k}$
$\geq 1-r^{k} \sum_{n=1}^{\infty}(n k+1) b_{n k+1}$
The result in (24) holds true from (25) \& (26) and using the simple consequence of(23) given by
$\sum_{n=1}^{\infty}(n k+1) b_{n k+1} \leq \frac{(1+k)(1-\beta)}{\{(k+1)(\lambda k+1)(1+\alpha)-(\alpha+\beta)\}}$
The result is sharp for the function f given in (22).

4. Closure Theorem for the class $R_{T}(\lambda, \alpha, k, \beta)$

In this section we prove that the class $R_{T}(\lambda, \alpha, k, \beta)$ is closed under convex linear combinations.
Theorem 4.1 If $T^{k}\left(f_{0}(z)\right)=z$ and $T^{k} f_{n}(z)=z-\frac{(1-\beta)}{\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\}} z^{n k+1} ; \forall n \geq 1$
then $T^{k}\{f(z)\} \in R_{T}(\lambda, \alpha, k, \beta)$ if and only if $T^{k}\{f(z)\}=\sum_{n=0}^{\infty} \mu_{n} T^{k}\left\{f_{n}(z)\right\}$ where $\mu_{n} \geq 0$ and $\sum_{n=0}^{\infty} \mu_{n}=1$.
Proof: Suppose $T^{k}\{f(z)\}=\sum_{n=0}^{\infty} \mu_{n} T^{k}\left\{f_{n}(z)\right\}$ with $\mu_{n} \geq 0$ and $\sum_{n=0}^{\infty} \mu_{n}=1$. Since

$$
\begin{aligned}
\sum_{n=0}^{\infty} \mu_{n} T^{k}\left\{f_{n}(z)\right\} & =\mu_{0} T^{k}\left\{f_{0}(z)\right\}+\sum_{n=1}^{\infty} \mu_{n} T^{k}\left\{f_{n}(z)\right\} \\
& =\left(1-\sum_{n=1}^{\infty} \mu_{n}\right) T^{k}\left\{f_{0}(z)\right\}+\sum_{n=1}^{\infty} \mu_{n}\left\{z-\frac{(1-\beta)}{\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\}} z^{n k+1}\right\} \\
& =\left(1-\sum_{n=1}^{\infty} \mu_{n}\right) z+\sum_{n=1}^{\infty} \mu_{n}\left\{z-\frac{(1-\beta)}{\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\}} z^{n k+1}\right\} \\
& =z-\sum_{n=1}^{\infty} \mu_{n} \frac{(1-\beta)}{\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\}} z^{n k+1}
\end{aligned}
$$

Consider

$$
\sum_{n=1}^{\infty} \mu_{n} \frac{(1-\beta)}{\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\}} \times \frac{\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\}}{(1-\beta)}=\sum_{n=1}^{\infty} \mu_{n}=1-\mu_{0} \leq 1
$$

Thus the coefficients of $T^{k}\{f(z)\}$ satisfy the inequality (10). Hence from the Theorem (2.2) it follows that $T^{k}\{f(z)\} \in R_{T}(\lambda, \alpha, k, \beta)$.
Conversely suppose that $T^{k}\{f(z)\} \in R_{T}(\lambda, \alpha, k, \beta)$. Since
$b_{n k+1} \leq \frac{(1-\beta)}{\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\}} ; \forall n \geq 1$
By setting $\mu_{n}=\frac{\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\}}{(1-\beta)} b_{n k+1} ; \quad n=1,2,3, \ldots \ldots$.
and $\mu_{0}=1-\sum_{n=1}^{\infty} \mu_{n}$ then $f(z)=\sum_{n=0}^{\infty} \mu_{n} f_{n}(z)$. This completes the proof of the theorem.
Theorem 4.2. The class $R_{T}(\lambda, \alpha, k, \beta)$ is closed under convex linear combinations.
Proof: Suppose that each of the function

$$
T^{k}\left\{f_{l}(z)\right\}=z-\sum_{n=1}^{\infty} b_{n k+1} z^{n k+1}(l=1,2)
$$

is in the class $R_{T}(\lambda, \alpha, k, \beta)$. We need to prove that the function $H(z)$ given by

$$
H(z)=\lambda_{1} T^{k}\left\{f_{1}(z)\right\}+\left(1-\lambda_{1}\right) T^{k}\left\{f_{2}(z)\right\} ; \quad(0 \leq \lambda \leq 1)
$$

also lies in the class $R_{T}(\lambda, \alpha, k, \beta)$. Since

$$
H(z)=z-\sum_{n=1}^{\infty}\left\{\lambda_{1} b_{n k+1,1}+\left(1-\lambda_{1}\right) b_{n k+1,2}\right\}^{n k+1}
$$

Consider
$\sum_{n=1}^{\infty}\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\}\left\{\lambda_{1} b_{n k+1,1}+\left(1-\lambda_{1}\right) b_{n k+1,2}\right\}$
$=\lambda_{1} \sum_{n=1}^{\infty}\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\} b_{n k+1,1}+\left(1-\lambda_{1}\right) \sum_{n=1}^{\infty}\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\} b_{n k+1,2}$
$\leq \lambda_{1}(1-\beta)+\left(1-\lambda_{1}\right) \beta$
$\leq(1-\beta)$
Thus from the Theorem (2.2) $H(z)=R_{T}(\lambda, \alpha, k, \beta)$.Hence the class $R_{T}(\lambda, \alpha, k, \beta)$ is closed under convex linear combinations.
5. Radii of starlikeness, convexity and close to convexity for the functions f in the class $R_{T}(\lambda, \alpha, k, \beta)$.
In this section we determine radius of starlikeness, convexity and close to convexity for the function $T^{k}\{f(z)\} \in R_{T}(\lambda, \alpha, k, \beta)$.
Theorem 5.1. If ${ }_{\mathrm{c}}$ then $T^{k}\{f(z)\}$ is starlike of order $\rho(0 \leq \rho<1)$ in $|z|<r_{1}(\lambda, \alpha, k, \beta, \rho)$ where
$r_{1}(\lambda, \alpha, \kappa, \beta, \rho)=\left\{\frac{(1-\rho)(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)}{(1-\beta(n k+1-\rho))}\right\}^{\frac{1}{n k}} ; \quad \forall n \geq 1$
And the result is sharp.
Proof:Suppose $T^{k}\{f(z)\} \in R_{T}(\lambda, \alpha, k, \beta)$. It is sufficient to show that

$$
\begin{equation*}
\left|\frac{z\left[T^{k}\{f(z)\}\right]^{\prime}}{T^{k}\{f(z)\}}-1\right| \leq|1-\rho| \text { for } 0 \leq \rho<1,|z|<r_{1}(\lambda, \alpha, k, \beta, \rho) \tag{27}
\end{equation*}
$$

Replacing $T^{k}\{f(z)\}$ and $z\left[T^{k}\{f(z)\}\right]^{\prime}$ in the L.H.S of (25) with their equivalent expressions in series, we get
$\left|\frac{\sum_{n=1}^{\infty}(n k) b_{n k+1} z^{n k}}{1-\sum_{n=1}^{\infty} b_{n k+1} z^{n k}}\right| \leq \frac{\sum_{n=1}^{\infty}(n k) b_{n k+1}|z|^{n k}}{1-\sum_{n=1}^{\infty} b_{n k+1}|z|^{n k}}$

This will be bounded by $(1-\rho)$ if

$$
\begin{align*}
& \sum_{n=1}^{\infty}(n k) b_{n k+1}|z|^{n k} \leq(1-\rho)\left[1-\sum_{n=1}^{\infty} b_{n k+1}|z|^{n k}\right] \\
& \sum_{n=1}^{\infty}\left\{\frac{(n k+1-\rho)}{(1-\rho)}\right\} b_{n k+1}|z|^{n k} \leq 1 \tag{28}
\end{align*}
$$

Since for $T^{k}\{f(z)\} \in R_{T}(\lambda, \alpha, k, \beta)$, from Theorem (2.2), we have

$$
\sum_{n=1}^{\infty}\left\{\frac{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)}{(1-\beta)}\right\} b_{n k+1} \leq 1
$$

The condition (28) will be satisfied if

$$
\begin{align*}
\frac{(n k+1-\rho)}{(1-\rho)}|z|^{n k} & \leq\left\{\frac{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)}{(1-\beta)}\right\} \\
|z| & \leq\left\{\frac{(1-\rho)(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)}{(1-\beta)(n k+1)(n k+1-\rho)}\right\}^{\frac{1}{n k}} ; \forall n=1,2,3, \ldots \ldots \tag{29}
\end{align*}
$$

Setting $|z|=r_{1}(\lambda, \alpha, k, \beta, \rho)$, the result of the theorem follows. And the result is sharp for each n for the functions $T^{k}\left\{f_{n}(z)\right\}$ given in (16).
Theorem 5.2. If $T^{k}\{f(z)\} \in R_{T}(\lambda, \alpha, k, \beta)$ then $T^{k} f(z)$ is close to convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{2}(\lambda, \alpha, k, \beta, \rho)$ where
$r_{2}(\lambda, \alpha, k, \beta, \rho)=\inf \left\{\frac{(1-\rho)(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)}{(1-\beta)(n k+1)(n k+1-\rho)}\right\}^{\frac{1}{n k}} ; \forall n \geq 1$
And the result is sharp.
Proof:Suppose $T^{k}\{f(z)\} \in R_{T}(\lambda, \alpha, k, \beta)$.It is sufficient to show that

$$
\begin{equation*}
\left|\frac{\left.z\left[T^{k} f(z)\right]\right]^{\prime \prime}}{\left[T^{k} f(z)\right]^{\prime}}\right| \leq(1-\rho) \text { for }\left[0 \leq \rho<1,|z|<r_{2}(\lambda, \alpha, k, \beta, \rho)\right] \tag{30}
\end{equation*}
$$

Replacing $\left[T^{k} f(z)\right]^{\prime}$ in the L.H.S of (30) with their equivalent expressions in series then we get

$$
\left|\frac{\sum_{n=1}^{\infty}(n k)(n k+1) b_{n k+1} z^{n k}}{1-\sum_{n=1}^{\infty}(n k+1) b_{n k+1} z^{n k}}\right| \leq \frac{\sum_{n=1}^{\infty}(n k)(n k+1) b_{n k+1}|z|^{n k}}{1-\sum_{n=1}^{\infty}(n k+1) b_{n k+1}|z|^{n k}}
$$

This will be bounded by $(1-\rho)$ if
$\sum_{n=1}^{\infty}(n k)(n k+1) b_{n k+1}|z|^{n k} \leq(1-\rho)\left[1-\sum_{n=1}^{\infty}(n k+1) b_{n k+1}|z|^{n k}\right]$ Or
$\sum_{n=1}^{\infty}\left\{\frac{(n k)(n k+1-\rho)}{(1-\rho)}\right\} b_{n k+1}|z|^{n k} \leq 1$
Since for $T^{k}\{f(z)\} \in R_{T}(\lambda, \alpha, k, \beta)$, from Theorem (2.2), we have

$$
\sum_{n=1}^{\infty}\left\{\frac{\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\}}{(1-\beta)}\right\} b_{n k+1} \leq 1
$$

The condition will be satisfied if

$$
\begin{aligned}
& \frac{(n k)(n k+1-\rho)}{(1-\rho)}|z|^{n k} \leq\left\{\frac{\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\}}{(1-\beta)}\right\} \forall n \geq 1 \\
& |z| \leq\left\{\frac{(1-\rho)(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)}{(1-\beta)(n k+1)(n k+1-\rho)}\right\}^{\frac{1}{n k}} \quad \forall n=1,2,3, \ldots
\end{aligned}
$$

Setting $|z|=r_{2}(\lambda, \alpha, k, \beta, \rho)$, the result of the Theorem follows. And the result is sharp for each n for the functions $T^{k}\left\{f_{n}(z)\right\}$ given in(18).
Theorem 5.3. If $T^{k}\{f(z)\} \in R_{T}(\lambda, \alpha, k, \beta)$ then $T^{k} f(z)$ is close to convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{3}(\lambda, \alpha, k, \beta, \rho)$ where
$r_{3}(\lambda, \alpha, k, \beta, \rho)=\inf \left\{\frac{(1-\rho)(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)}{(1-\beta)(n k+1)}\right\}^{\frac{1}{n k}} ; \forall n \geq 1$
And the result is sharp.
Proof: Suppose $T^{k}\{f(z)\} \in R_{T}(\lambda, \alpha, k, \beta)$.It is sufficient to show that
$\left|\left[T^{k} f(z)\right]^{\prime}-1\right| \leq(1-\rho)$ for $\left[0 \leq \rho<1,|z|<r_{3}(\lambda, \alpha, k, \beta, \rho)\right]$
Replacing $\left[T^{k} f(z)\right]$ ' in the L.H.S of (30) with their equivalent expressions in series then we get
$\left|1-\sum_{n=1}^{\infty}(n k+1) b_{n k+1} z^{n k}-1\right| \leq \sum_{n=1}^{\infty}(n k+1) b_{n k+1} \mid z z^{n k}$
This will be bounded by $(1-\rho)$ if
$\sum_{n=1}^{\infty}(n k+1) b_{n k+1}|z|^{n k} \leq(1-\rho)$
$\sum_{n=1}^{\infty} \frac{(n k+1)}{(1-\rho)} b_{n k+1}|z|^{n k} \leq 1$
Since for $T^{k} f(z) \in R_{T}(\lambda, \alpha, k, \beta)$, from Theorem (2.2), we have
$\sum_{n=1}^{\infty}\left\{\frac{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)}{(1-\beta)}\right\} a_{n} \leq 1$
The condition (33) will be satisfied if
$\frac{(n k+1)}{(1-\rho)}|z|^{n k} \leq\left\{\frac{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)}{(1-\beta)}\right\} \quad \forall n \geq 1$
$\Rightarrow|z| \leq\left\{\frac{(1-\rho)(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)}{(1-\beta)}\right\}^{\frac{1}{n k}} ; \quad \forall n \geq 1$
Setting $|z|=r_{3}(\lambda, \alpha, k, \beta, \rho)$, the result of the Theorem follows. And the result is sharp for each n for the functions $T^{k}\left[f_{n}(z)\right]$ in (16).

6. Integral Operators

In this section we consider the integral operators for func tion $T^{k} f(z) \in R_{T}(\lambda, \alpha, k, \beta)$.
Theorem 6.1:If $T^{k} f(z) \in R_{T}(\lambda, \alpha, k, \beta)$ then the function $T^{k}[f(z)]$ defined by
$T^{k}[f(z)]=\frac{1+c}{z^{c}} \int t^{c-1} T^{k} f(t) d t(c>-1)$
Is also in $R_{T}(\lambda, \alpha, k, \beta)$.

IJCMS
ISSN 2347-8527
Volume 5, Issue 8
August 2016
Proof: Suppose $T^{k} f(z) \in R_{T}(\lambda, \alpha, k, \beta)$, we have
$T^{k}[F(z)]=z-\sum_{n=1}^{\infty} b_{n k+1}\left\{\frac{1+c}{n k+1+c}\right\} z^{n k+1}, \quad 0<\left\{\frac{1+c}{n k+1+c}\right\}<1$
Consider
$\sum_{n=1}^{\infty}\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\} b_{n k+1}\left\{\frac{1+c}{n k+1+c}\right\}$
$\leq \sum_{n=1}^{\infty}\{(n k+1)(\lambda n k+1)(1+\alpha)-(\alpha+\beta)\} b_{n k+1}$
$\leq(1-\beta) \quad$ (using the inequality (10))
$\Rightarrow \quad T^{k}[F(z)] \in R_{T}(\lambda, \alpha, k, \beta)$
Hence the Theorem.

7. Acknowledgement

The authors would like to thank Prof. T.Ram Reddy for his help and guidance throughout this work.

References

1. R.M.Ali, S.K.Lee , V.Ravichandran and S.Supramaniam, The Fekete-Szego coefficient functional for transforms of analytic functions, Bulletin of the Iranian Mathematical Society, 35(2009), no.2, pp.119-142.
2. A.W. Goodman, On uniformly convex functions, Ann. Pal. Math. 56(1991).
3. A.W. Goodman, On uniformly starlike functions, Journal of Math. Anal and appl. 155 (1991), pp.364-370.
4. S.Kanas and H.M.Srivastava, Linear operators associated with K-uniformly convex function, Integral transform for special functions, 9(2008) pp.121-132.
5. W.Ma and D.Minda, Uniformly convex functions, Ann.Polon.Math.m 57(1992), pp.165-175.
6. S.Owa, Y.Polatoglu and E.Yavuz, Coefficient inequalities for classes of uniformly starlike and convex functions, JIPAM, 7(5)(2006), Article 16.
7. F.Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc.Amer.Math.Soc.,118(1993), 189196.
8. K.Saroja, Coefficient inequalities for some subclasses of analytic, univalent and multivalent function, Ph.D Thesis, Kakatiya University (2011).
9. S.Shamas, S.R.Kulkarni and J.M.Jahangiri, Classes of uniformly starlike and convex functions, Int.Jour.Mathe.Sci. 55(2004), pp.2959-2961.
10. H.Silverman, Univalent functions with negative coefficients, Proc.Amer.Math.Soc.51(1975), pp. 109-116.
11. H.M.Srivastava, T.N.Shanmugam, C.Ramachandran and S.Sivasubramanian, A new subclasses of k-uniformly convex functions with negative coefficients, JIPAM, 8(2)(2001), article 43, 14 pages.
12. A.Wisniowska and S.Kanas, Conic regions and k-uniform convexity, Jour.Comput.Appl.Math. 105(1999) ,pp. 327-336.
