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Abstract : The purpose of this paper is to find the Fourth Hankel determinant for the functions belongs to the family of starlike
and convex functions in connection to the cosine function. We also consider the estimation of Fekete-Szegd inequality, Zalcman
conjecture and Toeplitz determinants for the functions in above classes subordinate to cosine function.
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. INTRODUCTION

The members f of the family A of holomorphic functions defined in the disc U = {z € C: |z| < 1} having Macluarins’s

series expansion given by
f(2) =27+ X% anz", €Y, (.1
are standardized by f'(0) — 1 = 0 = f(0). The functions in A that are univalent (injective) in U constitute the subclass of A
and this subclass is represented by S. Further the two subclasses of S that describe the geometric properties of the domain onto
which U is mapped are respectively defined by
S*={f €S: Re(%) >0, f(2) = z+ X5y Anz™, z €U},
C={g€S:Re(1+ ZZ’—(’S)) >0, g(z) =z+ X5, byz", z€ U}

The coefficients of functions in $* and C are connected by the Alexander’s relation [22] given by a,, = nb,, ¥n € N. The well
known Carathéodary class of holomorphic functions p in U following p(0) = 1,0 < Re(p(z)),z € U is denoted by P. The

2
members of this class has the form p(z) = 1 + X%, ¢,2z", z € U. The functions p(z) = g p(2) = 1:2 are in P. Two analytic

functions u and v in U connected by u(z) = v(w(2)), for all z € U, where w is a Schwarz function in U satisfying w(0) = 0 and
lw(z)] <1,z € U is expressed as u < v and read as u is subordinate to v. In addition to analyticity if v is univalent in I, it is
evident that u(U) c v(U) and u(0) = v(0).

The Hankel determinant of f € A for ¢ = 1,n > 1 is designated by H,(n), defined by Pommerenke [17] as below

an An+1 Apyzees-- an+q—1
Ans1 An+2  Apyzess--- an+q
An+2 An+3  Anigeeees an+q+1
Hq(n):=|_ _ e ___ (1.2)
An+g-1 An+q  OAn+q+ie----- An+2q-2

The g Hankel determinant was initially studied and developed by Noonan and Thomas [15]. For different values of g, n we get
various Hankel determinants. The study of estimating sharp upper bound on |H,(n)| for functions in different subclasses of A
attracted by many authors. For ¢ = 2,n = 1, the determinant |H,(1)| is given by H,(1) = [a; — a2]. It is the particular case of
Fekete-Szegd inequality |a; —va3| for v =1. In case of ¢ =n =2 we have H,(2) = asa, — (as)?, the second Hankel
1,forf € S§*,
%,forf €EC.’
bounds are sharp. Unfortunately, the sharp bound of |H,(2)| for f € S is still not known. Several authors like Arif et al. [1]
examined |H,(2)| for various subclasses of analytic univalent and bi-univalent functions.
If we take g = 3,n = 1 in H,(n), the Hankel determinant H3(1) = az[asa, — a3] — as[a, — aza,] + as[az — a5]. By
applying triangle inequality we have
|Hs (D] < lasllasa, — a3| + |as|laza, — ay| + |as||az — a3]. (1.3)

All quantities on the right hand side of above expression have sharp upper bounds except |a,a; — a,|. Babalola [3] proved that

16,forf € S*,
|Hz; ()] < {E forf € C. Bansal et al. [4] refined the upper bound of |H5(1)| for some functions in the classes investigated by

24 ’

determinant. Several researchers have studied the bound on |H,(2)]. Janteng et al. [10] proved that |H,(2)] < { The

Babalola [3]. In 2017, Zaprawa [22] proved that
1, forf € S*,
|H;(1)] < {ﬂ forf € C. He claimed that these bounds are still not sharp. Orhan and Zaprawa [16] obtained an upper
540 )
bound to |H5(1)] for the functions in S*, C of order a. Kowalczyk et al. [12] calculated the sharp upper bound on |H5(1)| for f €
C givenby |H;(1)| < é is a finest bound compared to the bound computed by Zaprawa [22]. Further Kwon et al. [13] estimated
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the bound |H;(1)| for f € $* and the value is improved up to g Ganesh et al. [7] calculated non-sharp bound on |H;(1)| for

functions with respect to symmetric points associated to an exponential function. Raza and Malik [20] estimated |H;(1)|
associated with Leminscate of Bernoulli.

Ay Az 0az 0G4
a, as 4as das
If we take ¢ = 4,n = 1 in H,(n), the fourth Hankel determinant H,(1) is given by Hy(1):= |a; a, as ag

a, 4as 4ae 4as

This Hankel determinant was initially studied by Arif et al. [1] for bounded turning functions. They showed that for f €

R, |Hy(D)| < 227 ~ 0.78050, where
94500

R = {z € W:Re(f'(2)) > 0}. In 2019, Arif et al. [2] obtained bound on |H,(1)| for f € SL given by |H,(1)| < 0.0678.
In recent times, Hai-Yan Zhang et al. [8] estimated bound on H,(1) for f € S* connected with Sine function. Muhammad Ghaffar
Khan et al. [11] studied coefficient problems corresponding to bounded turning functions incorporated with Sine function. N. E.
Cho and Virendra kumar [5] studied bounds on a few initial coefficients and bound on |H,(1)| for f € A.

The Hankel and Toeplitz determinants were closely related. Toeplitz determinants contain constant entries along the principal
diagonal unlike as Hankel determinants. Thomas and Halim [21] initiated the concept of the symmetric Toeplitz determinants for
f as represented in (1.1) and is defined as follows:

an, A qeeeeennens Apig-1
Apiq Apeeeennenns Apig—2

Ty=|""  ~~ ~ o : (14)
Apig—1  Onppqezerroemenes a,

where n, g are positive integers, with a; = 1. For small values of n, q the estimates of Toeplitz determinants |T,(n)| for functions
in §* and close to convex functions K have been studied in [21]. Radhika et al. [18] computed |T,(n)| for functions in R. Md
Firoz ali et al. [6] estimated T5(1) and T5(2) for f in C and R. Toeplitz determinants T5(1), T5(2), T,(2) and T,(3) for functions
in M, are estimated by Ramachandran et al. [19]. Hai-Yan Zhang et al. ([8],[9]) have been studied Toeplitz determinants T5(2)
and T,(2) respectively for functions in Sy associated with Sine function and obtained upper bounds. Substituting n = 1,q = 4
and n = 2,q = 4 in (1.4) we have the Toeplitz determinants T, (1), T,(2) respectively as below:

1 a, a; a,

a, 1 a, az

,(H)=|a; a, 1 a, ,
a, a3 a, 1

Upon simplifying we have,
T,(1) = (1 = a3)* — (aa3 — a4)* + (a3 — a,a4)* — (az — a,a3)* + 2(a5 — a3)(az — a,a,)(1.5)

and following [9]
a, a4z a, Gas |
az G a3z Ay
T,(2)=|a, as a, az ,
as a, as a,

T4(2) = (a3 — a3)? — (aza, — a,as)? + (af — azas)? — (a2a3 — aza,)* + 2(a3 — a,a,)(a,a, — asas). (1.6)

Inspired by the work cited above we estimate fourth Hankel determinant and bounds on Toeplitz determinants T,(1), T,(2) for

starlike and convex functions related to Cosine function. Besides this we also compute Fekete-Szeg6 inequality and Zalcman

conjecture for the functions in S*, C subordinate to Cosine function.

Now, we define the following classes.

Definition 1.1 An analytic function f € S is in the family Sz, iff
zf1(2)
f(@

<cos(z); zeU.

Definition 1.2 An analytic function g € S is in the family C,,;, iff

zg11(z)
< ; .
1+ ) cos(z); zelU

1. PRELIMINARIES

Lemma 2.1 [17] If p(2) = X7, ckzX € P, co =1, z € Uthen |c,| < 2,Vk EN.

Lemma 2.2 [2] If p(2) = Xi—o crz¥ € P, ¢y = 1, z € U then for any real numbers J,K, L
Jei —Keicp + Les| < 2(U1+ 1K = 2]] + ] — K + L.
In case, whenJ = 1,K = 2,L = 1 we have |¢} — 2¢;¢, + 3] < 2.
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Lemma 2.3 [14] If p(2) = X3=o ckz¥ €P, ¢y =1, z € Uthenforanyn € C,
lc, —nc?| <2 Max{1,|2n — 1|}.
The inequality is sharp for p(2) = (1 +2)(1 —2)7%, p(z) = 1 +zH) (1 —2zH)?!
Lemma 2.4 [22] If p(2) = X7, ckz¥ € P, ¢y =1, z € Uthenfor any p € [0,1],
Ick - anCk—nl <2

holds for k,n € N,k > n.

I11. FOURTH HANKEL DETERMINANT FOR f € S}os

Theorem 3.1 If f € S, is of the form (1.1) then |H,(1)| < 1;20974648 = 1.21489198. (3.1)

Proof. By the definition of the class S;,¢ and from the subordination it is evident that
zf1(z)

D cos(w(z)), 3.2)
where
ZZS) =14 a,z+ (—a? + 2a3)z% + (3a, — 3a,a; + a3)z® + (4as + 4aia; — 4aya, — 2a3 — a3)z*

+(5a¢ — 5a,as + 5a%a, + 5a,a% — 5a3a; + a3 — 5asa,)z°
+(6a, — 6a,as + 6a3ias — 6azas + 12a,asa, — as — 6asa, — 3a3 + 2a3 — 9a3a3 + 6azaz)z® + -+
and w(z) is a Schwarz function. The functions in 2 are nicely connected with Schwarz function, we have
_1+w(2)
p(Z) - 1 _ W(Z)

where p € P. Rewriting w in terms of p, we have

2 3 2 2 4
_aZ (G_G) ., (B, 0 _a%) s, (G4_G%b_ G 3¢a6 _a) ..
W(Z)_2+(2 4)2 +<2+8 z)z +(2 2 478 16)° "

=14cz+cz° + ¢z + -,

Then
cos(w(2))
1 ciz? N ﬁ_ﬁ 3 1y ﬁ_ 3cfc,  35¢t =T 3cic; 3cici 11c B 35c¢ic, _ %) s
g "\8 4 2\ 2 "a T4 Tz 4 8 8 ' 192 96 4
—l— .

(3.3
By writing series expansion of the function on the left hand side of (3.2) and comparing the like powers of z¥, k = 1,2,3, .., from
(3.2) and (3.3), the first few coefficients are

a =0, (3.4)
cf
as = _1_6’ (35)
3
s = 2_1 RTY (3.6)
2

=1 (——(2c1 9¢,¢, + 6¢3) — C—Z) (3.7)
= (384 (17¢} = 150¢;¢, + 144c3) == (cq — €3) — 2 (c3 = 22), (3.8)

177 1757 3 3 _ 395 2 3¢ 2
LA ()~ 02y 43 0y = By 0) 4+ 29% (¢ - 9%y, %y 3G a%) 39

By taking modulus on either side of the equations (3.4)—(3.9) and applying Lemmas 2.1, 2.2, 2.3 and 2.4 respectively the bounds
on these coefficients are given by

las| <1 (3.10)
lay| <5 (3.11)
las| < % (3.12)
las| < }53 (3.13)
lasl < 5 (3.14)
Further we have
4
a,a, — a3 = —2%, (3.15)
2
03 — Ay = %(Cz - %1), (3.16)
a5 —a3=-%, (3.17)
a,a, +2as = %. (3.18)
By applying Lemma 2.1 on (3.15), (3.17), (3.18) and Lemma 2.4 on (3.16), we have
1
laza, — a3l < 11_6'
|a2a3 - a4| S 5, (3.19)
1
— gl < =
|a3 a2| — 4'
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1
la,a, + 2a3] < T

From (1.3) and (3.19) along with (3.10), (3.11), (3.12) we have |H3(1)| < % Following the representation given in [11] the
bound on fourth Hankel determinant is given by
|Hy (D] < |as||H3 ()] + 2]asllag|lazas — a3 + 2|as||ag||azas — as| + |ag|*|az — a3| +
las|?|aza, — a3| + |as|?lazay + 2a5| + |as|® + |ay|* + 3|as||as|?|as] (3.20)
By employing the respective bounds on the right hand side of (3.20) from (3.10)—(3.13) along with (3.19), we have the desired
result.

Theorem 3.2 If f € S}, then |a; — va2| < ifor any v € C.

Proof. From (3.4) and (3.5), we have for any v € C,

2 cf
az —va;| = |az| = el
By Lemma 2.1 the result follows.
IV. ZALCMAN CONJECTURE FOR f € S¢os
In this section we consider Zalcman conjecture for the case of n=2,3,4.
Theorem 4.1 If f € Sz, is of the form (1.1) then
2 _ < =
la; —as| < {1
2
lag — as| < e 4.2)
R 81
lag —a;| < 18

Proof. From Theorem 3.2, it is evident that |a3 — as| < i forv=1.
From (3.5) and (3.7), we have

2 2 2 3
5 ¢, 1 ¢ 3 c3 ¢ ¢ 19¢; —72¢cicy + 48c;
—as=(——)2—~(—=(2¢ -9 - D ==+
_ a5 = as = (m7g)" 3 (754 (2 —9a1cz +603) =) =5+ 4 192
Taking modulus and employing Lemmas 2.1, 2.2 we get
41
laZ —ag| < %
Again from (3.6), (3.9) we have
2 = 1(2717C16 B 209ctc, 427c¢c? 131cdcs é_ 3c16563 | €165 3cic, cycq B §)
+ 77692160 768 768 384 8 4 4 8 4 8
1 209ct 2717¢2 3cycy 427c;c, LG €25, 5 12103148 © a8
=576 @ 250807 4 7576 )+ (05 =57 + 35, (1316 +48c1c; +48¢;)
cy cy 3cicy
tpC—5)——3)
Upon taking modulus and applying Lemma 2.1, 2.2, 2.4 we get
81
laZz —a,| < 1
Hence Zalcman conjecture holds for n = 2,3 and 4.
V. FOURTH HANKEL DETERMINANT FOR g € Cs
Theorem 5.1 If g(2) = z + X5k, buz™ € Cogs, then [Hy(1)] < Som"2- = 0.0130205853 (5.1)
Proof. From Theorem 3.1 and the Alexander’s relation a,, = nb,, we get the coefficients of g as
b, =0, (5.2)
—_d
by =—25 (5.3)
1l ac
by = 4 (24 12 '2 , 5-4)
L4 3¢ as o9
b5_20( 1§+ 8 4 8”’ , , (55
_ 1 (17¢f  75cicp 3cic3 _ €1€4 |, €1C)  C2C3 | C1Ch
6_30(384 w2 T g . T4 : T )’ (5.6)
b, = 1(17701%2 1757 ¢ 3cfcy _ EC—" n 3cicacs 395c%c?
77 42 768 92160 1 8 3g4 173 4 768
R ) (5.7)
The bounds on these coefficients is readily given from (5.3)—(5.7) and we have
1
Ibs] < 55 (58)
1
Ibal < 55 (5.9)
11
|bs| < ﬁ (5.10)
|be| < ¢ (5.11)
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|b| < == (6.12)
Further we have
C4
b2b4, - b32v = - 23;4 (513)
b2b3 - b4 =—(Cy — _) (514)
—p2 = _C_1
b; — b2 = 48 (5.15)
b2b4_ + 2b3 = 1152 (516)
By applying Lemma 2.1 on (5.13), (5.15), (5.16) and Lemma 2.4 on (5.14), we have
<
lbaby = b31 < 7
|b2b3 - b4_| S , (5.17)
by — 31 < 2
21=12

1
|byby + 2b3| < 7o

From (1.3) and (5.17) along with (5.8), (5.9), (5.10) we have |H;(1)| < %. Following the representation given in [11] the
bound on fourth Hankel determinant is given by
|Hy(1)] < |b||H5(1)| + 2|y |bs||b2by — bF| + 2|bs||be||bybs — byl + |bg|?|bs — bF| +
|bs|?|b2by — b3| + |bs|?|b2by + 2b3| + |bs|® + |bsl* + 3|bs]|bsl?|s] (5.18)
By employing the respective bounds on the right hand side of (5.18) from (5.8)—(5.11) along with (5.17), we have the desired
result.

Theorem 5.2 If g € C,,s, then

|bs — 0b}| <7, (5.19)
forany o € C.
Proof. From (5.2) and (5.3), we have for any ¢ € C,

2
‘1

|bs — ob3| = |bs| = |

By Lemma 2.1 the result follows.

V1. ZALCMAN CONJECTURE FOR g € C,,s
In this section we consider Zalcman conjecture for the case of n=2,3,4.

Theorem 6.1 If g € C,; is of the form (1.1) then

1
|b2 b3| - 12
127
b3 — bs| < T, (6.1)
b2t < 2975
b = bs| < 7555
Proof. From Theorem 5.2, it is evident that |b2 — b;| < 0.0833, for o = 1.
From (5.3) and (5.5), we have
1 ¢} 3ckc, cic3 2
- __2__ _t 172 178 =2
bs = (=39 0ttt 3 7 g
c2 Lo c1 53C1 216¢4cy + 144c;
_ _ ~ 160 ' 80 144 )
Taking modulus and employing Lemma 2.1, 2.2 we get
127
Z_p|<——-=
|b3 — bs| < 77 = 0.0881,
Again from (5.4), (5.7) we have
b = i(21776‘16 B 573ctc, N 1227cic? B 131cic, B § N 3c16563 €1Cs 3cic,  CaCy o
4 7742192160 2304 2304 384 8 4 4 8 4 8
1 573 2177¢2. ¢ C5C3 131 288c.c 4 48 c2 +1227c12c2
=20 2302 @~ 22020 2 2~ 384( o cicz + 48¢3) (C‘* 20" 2304
3c2c, ¢iC30
g 8 )
Upon taking modulus and applying Lemma 2.1, 2.2, 2.4 we get
b2 — | < 2075
7174032

Hence Zalcman conjecture holds for n = 2,3and4.
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VII. BOUNDS ON TOEPLITZ DETERMINANT T4(1),T4(2) for f € S},

Theorem 7.1 If f € St and £(2) = z + T5%y anz", then [T (1] < 22 2857 ~ 1.24001736. (7.1)

Proof. From (1.5), substituting the value of a, = 0, taking modulus on either side of (1.5) and applying triangle inequality we
have
(D] < 1+ |ag|® + |as|* + 2|as|?
=1+G)%+ Q) +2()*

2857

=— = 1.24001736.
2304

Theorem 7.2 If f € Stos and £ (2) = 7 + X5k anz™, then |T,(2)] < 2= = 0.0452473958. (7.2)

Proof. From (3.5), (3.6), (3.7) we have

5 c3 0102 1 c?
az —a3as = (55~ ) (_ )(_ (__ (201 9c1c; + 6¢3) — g))
2 s 23
==[- 2;; (c2— cf) + 2 (04 = 226163) — == (s — )] (7.3)
Taking modulus and applying lemmas 2.3, 2.4 along W|th the triangle mequallty we obtain

2 _ 4 506 | 23(4)
lag — asas| < P (288 s —) = Py = 0.1145 (7.4)

From (1.6), substituting the value of a, = 0, taking modulus on either side of (1.6) and applying triangle inequality we have
IT.(2)| < Iaal4 + 2Ia3I Iasl + 2Ia3I |ay|? +33[a4 — azas|?
— 4 - 3 2
= ' 20 53+ 2P G + G
5753 = 0.0452473958 (7.5)

T 82944

VIIl. BOUNDS ON TOEPLITZ DETERMINANT T4(1),T4(2) FOR g € C,s
The results of the following theorems are analogous to the theorems discussed under section 7, hence the details are omitted.

Theorem 8.1 If g € C,ys is of the form (L.1) then |T,(1)| < j;;g" ~ 1.02088156 (8.1)
Proof. We have |T.(D)]| < 1+ |by|? + |bs|* + 2|bs|?
1 1 1
=1+ () + ()" + 23
21169 1.02088156
= 20736
Theorem 8.2 If g € C, is of the form (1.1) then |T,(2)| < 073000 = 0.000289834105. (8.2)
Proof. Consider
1 3 e ct  3cic ciC c?
2 _p _1_£ AN y=2L 172y (A3 _ (22
b} eGi— 1) )()[ e )
= 2_1[_%( 2~ ‘C1) + 360( C1¢3) 360 L (cs - ] (8.3)
Taking modulus and applying lemmas 2.3, 2.4 along W|th the trlangle mequallty we obtain
2 7(2) 7(2)
|by — b3bs| < (%+ 3600 T 360
= E ~ 0.00625 (8.4)

From (1.6), substituting the value of b, = 0, taking modulus on either side of (1.6) and applying triangle inequality we have
T4 (2)| < |bs|* + 2If3I3|bsI + 2|b131| Ib4I21+ |b§ - b3b51|2
— (=4 3 T\2(_-\2 )2
- (12) T 2(12) 120 2(12) (12) T (160)
091 _ ~ 0.000289834105 (8.5)

"~ 2073600
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