DEPARTMENT OF BIOTECHNOLOGY STUDENT ACTIVITIES Online Picture quiz on Kahoot

Date : 23.09,2020 Total students attended : 44 Activity Pictures related to DNA structure and function were given for identification in a customized quiz.

🖬 Yahoo 🛛 G Googi 📓 (510) 🖉 Launo 🗍 New Tab 🔹 New Tab	🖪 Class: 🚺 🛆 My	D 📔 Stude 🛛 🖬 8.Sc ii 🛛	Class: New Tab	Vides K! Kr × +	0 -	a ×
← → C	e5-880d-96e32af6bc0c	/e54eb6d6-aa38-43a5-bad9-o	l3e4t385365f/1600827148	346/players/?tab=all&s	* • • *	2 :
Become the ultimate Kahootl'er	with Premium+I Up	grade before June 30 - 3	months are on us!	Upgrade now		×
Kahoot! 🛱 Home @ Discover 🗮 Librar	ry <u>mil</u> Reports	අපිඅ Groups		Upgrade now	Create	¢
0 Report		Report	options	Challenge 🍷 [Finished	Î
DNA - THE WONDER MOLE	ECULE Ø			Start date: Sep 23	2020, 7:42 am	
				End date: Sep 23 2	020, 4:00 pm	
Summary Players (44) Questions (15)				Hosted by GEETHA	NJALIKARLI	
All (24) Need help (27) Didn't fields /	(22)			Carrib		_
	(23)			Search		
Nickname 🗸	Rank 🗸	Correct answers \checkmark	Unanswered \checkmark	Final score 🗸		
K.raj	1	O 100%	-	14 378		:
Yashwanth	2	O 93%	-	12 782		:
K.Kartheek	3	0 80%	-	10 869 Activate V	/indows	:
Kommirimanjula	4	0 80%	1	Go to Setting	s to activate Windo	Ϋ.

Essay Writing Competition

"Molecular Bases of Vaccines COVAXIN and Covishield" on 15.04.2021 for I YR, II YR and III Yr B.Sc Biotechnology

Total students participated : 18

Best Essay Prize I : Shubangini Thakur, III B.Sc Bt.B.C

Best Essay Prize II : K.Manjula, II B.Sc Bt.Z.C

GOVT. DEGREE COLLEGE, KUKATPALLY, (Medchal Dist.) TELANGANA, INDIA

Department of Biotechnology

Certificate of Achievement

This is to certify that Ms.Shubangini Thakur, III B.Sc Bt.B.C had participated and received the **Best Essay Prize** in the essay writing competition on the topic "**Molecular Bases of Vaccines COVAXIN and Covishield**" organized by Department of Biotechnology on 15/04/2021

Geetta

Mrs.K.Geethanjali Asst. Professor in Biotechnology

Dr. N. Alivelu Mangamma Principal Go to Settings t

GOVT. DEGREE COLLEGE, KUKATPALLY, (Medchal Dist.) TELANGANA, INDIA

Department of Biotechnology

Certificate of Achievement

This is to certify that Ms.K.Manjula, II B.Sc Bt.Z.C had participated and received the **Best Essay Prize** in the essay writing competition on the topic **"Molecular Bases of Vaccines COVAXIN and Covishield"** organized by Department of Biotechnology on 15/04/2021

geetto

Mrs.K.Geethanjali Asst. Professor in Biotechnology

Dr. N. Alivelu Mangamma Principal Go to Settings

2020-21

SEM III

Paper : MOLECULAR BIOLOGY

Name of the student	Class	Торіс
ALIKANTI ANITHA	BT.Z.C	Differences in Gene structure of Eukaryotes and
		prokaryotes
B V S R VARUN	BT.Z.C	Transcription in prokaryotes
CHEPURI SWETHA	BT.Z.C	Salient features of genetic code
DHARA SINDHU	BT.Z.C	Post transcriptional modification in eukaryotes
SRINIVAS		
GAIKWAD HEPHZIBAH	BT.Z.C	Different types of gene regulation. Lac operon
GANGADHARI MANJULA	BT.Z.C	Restriction enzymes classification and functions
GANGADHARI PRANATHI	BT.Z.C	Gene transfer methods
G SHIREESHA	BT.Z.C	Differences in Gene structure of Eukaryotes and
		prokaryotes
K MANJULA	BT.Z.C	Transcription in prokaryotes
K PALLAVI	BT.Z.C	Salient features of genetic code
M RAJASHEKAR	BT.Z.C	Post transcriptional modification in eukaryotes
ALAGONDA SAI KRISHNA	BT.B.C	Different types of gene regulation. Lac operon
AMEENA FATIMA	BT.B.C	Restriction enzymes classification and functions
ARSHIYA MUBEEN	BT.B.C	Gene transfer methods
CHIPPALA SWATHI	BT.B.C	Differences in Gene structure of Eukaryotes and
		prokaryotes
DHADIGA MOUNIKA	BT.B.C	Transcription in prokaryotes
DONTHIREDDY SAI	BT.B.C	Salient features of genetic code
CHARITHA		
GANTE SAIVARMA	BT.B.C	Post transcriptional modification in eukaryotes
KAKARAPARTI KARTHEEK	BT.B.C	Different types of gene regulation. Lac operon
KANCHARI VIMALA	BT.B.C	Restriction enzymes classification and functions
KOTTA APARNA	BT.B.C	Gene transfer methods
MADIRE SWARNA	BT.B.C	Differences in Gene structure of Eukaryotes and
MAHESWARI		prokaryotes
METHRI MALLESH	BT.B.C	Structure of prokaryotic and eukartyotic gene
		(promoter, initiator & terminator regions) Structure
		and functions of RNA polymerase
NALI SINDHU PRIYA	BT.B.C	Transcription mechanism- initiation, elongation &
		proof reading, termination (rho independent & rho
		dependent); basic concept of reverse transcription
		Post transcriptional modification in eukarytotes
PANUGOTH GANESH	BT.B.C	Genetic code- properties, deciphering of genetic code,

		wobble hypothesis, aminoacylation
P BALAKISHTAMMA	BT.B.C	Translation mechanism- initiation, elongation and
		termination
PEMMASANI V L N	BT.B.C	Gene regulation: Negative & Positive control Operon
SURYA CHANDRA		concept, Lac operon, CAP-cAMP system, Arabinose
		operon
SAMPATH RADHIKA	BT.B.C	Enzymes useful in molecular cloning: Restriction
		endonuclease, DNA ligases, polynucleotide kinase,
		klenow enzyme, DNA Polymerase- I, reverse
		transcriptase, alkaline phosphatase, terminal
		nucleotidyltransferase
SHANIGARAPU HARISH	BT.B.C	Cloning Vectors: PBR 322, Bacteriophage, Cosmid,
		Phagemid, Shuttle vector
THATI SPANDANAREKHA	BT.B.C	Polymerase Chain Reaction and its applications

Name of the student	Class	Торіс
ALIKANTI ANITHA	BT.Z.C	Translation mechanism- initiation, elongation and
		termination
B V S R VARUN	BT.Z.C	Gene regulation: Negative & Positive control Operon
		concept, Lac operon, CAP-cAMP system, Arabinose
		operon
CHEPURI SWETHA	BT.Z.C	Enzymes useful in molecular cloning: Restriction
		endonuclease, DNA ligases, polynucleotide kinase,
		klenow enzyme, DNA Polymerase- I, reverse
		transcriptase, alkaline phosphatase, terminal
		nucleotidyltransferase
DHARA SINDHU	BT.Z.C	Translation mechanism- initiation, elongation and
SRINIVAS		termination
GAIKWAD HEPHZIBAH	BT.Z.C	Transcription in prokaryotes
GANGADHARI MANJULA	BT.Z.C	Salient features of genetic code
GANGADHARI PRANATHI	BT.Z.C	Post transcriptional modification in eukaryotes
G SHIREESHA	BT.Z.C	Different types of gene regulation. Lac operon
K MANJULA	BT.Z.C	Restriction enzymes classification and functions
K PALLAVI	BT.Z.C	Gene transfer methods
M RAJASHEKAR	BT.Z.C	Differences in Gene structure of Eukaryotes and
		prokaryotes
ALAGONDA SAI KRISHNA	BT.B.C	Structure of prokaryotic and eukartyotic gene
		(promoter, initiator & terminator regions) Structure
		and functions of RNA polymerase
AMEENA FATIMA	BT.B.C	Restriction enzymes classification and functions
ARSHIYA MUBEEN	BT.B.C	Gene transfer methods
CHIPPALA SWATHI	BT.B.C	Differences in Gene structure of Eukaryotes and

		prokaryotes
DHADIGA MOUNIKA	BT.B.C	Transcription in prokaryotes
DONTHIREDDY SAI	BT.B.C	Salient features of genetic code
CHARITHA		
GANTE SAIVARMA	BT.B.C	Post transcriptional modification in eukaryotes
KAKARAPARTI KARTHEEK	BT.B.C	Different types of gene regulation. Lac operon
KANCHARI VIMALA	BT.B.C	Restriction enzymes classification and functions
KOTTA APARNA	BT.B.C	Gene transfer methods
MADIRE SWARNA	BT.B.C	Differences in Gene structure of Eukaryotes and
MAHESWARI		prokaryotes
METHRI MALLESH	BT.B.C	Structure of prokaryotic and eukartyotic gene
		(promoter, initiator & terminator regions) Structure
		and functions of RNA polymerase
NALI SINDHU PRIYA	BT.B.C	Transcription mechanism-initiation, elongation &
		proof reading, termination (rho independent & rho
		dependent); basic concept of reverse transcription
		Post transcriptional modification in eukarytotes
PANUGOTH GANESH	BT.B.C	Genetic code- properties, deciphering of genetic code,
		wobble hypothesis, aminoacylation
P BALAKISHTAMMA	BT.B.C	Different types of gene regulation. Lac operon
PEMMASANI V L N	BT.B.C	Restriction enzymes classification and functions
SURYA CHANDRA		
SAMPATH RADHIKA	BT.B.C	Gene transfer methods
SHANIGARAPU HARISH	BT.B.C	Differences in Gene structure of Eukaryotes and
		prokaryotes
THATI SPANDANAREKHA	BT.B.C	Transcription in prokaryotes

SEM V

Paper : Recombinant DNA technology

Name of the student	class	Торіс
BIJJA PAVANI	BT.Z.C	Enzymes useful in molecular cloning: Restriction
		endonuclease, DNA ligases, polynucleotide kinase,
		klenow enzyme, DNA Polymerase- I, reverse
		transcriptase, alkaline phosphatase, terminal
		nucleotidyltransferase
BODDU YASHWANTH	BT.Z.C	Cloning Vectors: PBR 322, Bacteriophage, Cosmid,
		Phagemid, Shuttle vector
CHELLURI SRUJANA	BT.Z.C	Polymerase Chain Reaction and its applications
DOVUR VEERESH	BT.Z.C	Structure of prokaryotic and eukartyotic gene
		(promoter, initiator & terminator regions)
		Structure and functions of RNA polymerase
GUDIPATI SONY	BT.Z.C	Enzymes useful in molecular cloning: Restriction

		endonuclease, DNA ligases, polynucleotide kinase,
		klenow enzyme, DNA Polymerase- I, reverse
		transcriptase, alkaline phosphatase, terminal
		nucleotidyltransferase
GUGLAVATH	BT.Z.C	Cloning Vectors: PBR 322, Bacteriophage, Cosmid,
VENKATESH		Phagemid, Shuttle vector
KANDUNURI BHARGAVI	BT.Z.C	Structure of prokaryotic and eukartyotic gene
		(promoter, initiator & terminator regions)
		Structure and functions of RNA polymerase
KANIMELLA SANDHYA	BT.Z.C	Transcription mechanism-initiation, elongation &
_		proof reading, termination (rho independent & rho
		dependent): basic concept of reverse transcription
		Post transcriptional modification in eukarytotes
Μ ΝΙΤΗΥΑ ΚΒΙΙΤΗΙ	BT.7.C	Genetic code- properties, deciphering of genetic
	511210	code wohble hypothesis aminoacylation
	BT 7 C	Translation mechanism- initiation elongation and
MONIGALA SHAMAN	DT.Z.C	termination
ΝΛΚΚΛ ΑΝΙΙΣΗΛ	BT 7 C	Gene regulation: Negative & Positive control
NARRA ANOSHA	D1.2.C	Operan concept Lac operan CAP-cAMP system
		Arabinose operon
	PT 7 C	Enzymos usoful in molocular cloning: Postriction
PALADI SKAVAN KUIVIAK	D1.2.C	andonucloaso DNA ligasos, polynucloatida kinaso
		klonow onzumo DNA ligases, polynucleotide kinase,
		transcriptace, alkaling phosphatace, terminal
		Claping Vesters: DDD 222, Desteriophage, Cosmid
	B1.2.C	Cioning Vectors: PBR 322, Bacteriophage, Cosmid,
		Phagemid, Shuttle Vector
	BI.Z.C	Polymerase Chain Reaction and its applications
PUTTA SAI KRISHNA	BI.Z.C	Structure of prokaryotic and eukartyotic gene
		(promoter, initiator & terminator regions)
	DT 7.0	Structure and functions of RNA polymerase
RATHOD SHIREESHA	B1.Z.C	Iranscription mechanism- initiation, elongation &
		proof reading, termination (rho independent & rho
		dependent); basic concept of reverse transcription
		Post transcriptional modification in eukarytotes
SABBITHI AISHWARYA	BT.Z.C	Genetic code- properties, deciphering of genetic
		code, wobble hypothesis, aminoacylation
TALLAPRODDATUR	BT.Z.C	Translation mechanism- initiation, elongation and
DHANUSH		termination
TOPARAM PRANEETH	BT.Z.C	Gene regulation: Negative & Positive control
		Operon concept, Lac operon, CAP-cAMP system,
		Arabinose operon
Vaishnavi	BT.Z.C	Enzymes useful in molecular cloning: Restriction
		endonuclease, DNA ligases, polynucleotide kinase,
		klenow enzyme, DNA Polymerase- I, reverse
		transcriptase, alkaline phosphatase, terminal
		nucleotidyltransferase

V GOVARDHAN	B1.Z.C	Cloning Vectors: PBR 322, Bacteriophage, Cosmid,
		Phagemid, Shuttle vector
A THEJA	BT.B.C	Polymerase Chain Reaction and its applications
GANTA SRUJAN	BT.B.C	Blotting techniques
H NAGA RAJU	BT.B.C	Enzymes useful in molecular cloning: Restriction
		endonuclease, DNA ligases, polynucleotide kinase,
		klenow enzyme, DNA Polymerase- I, reverse
		transcriptase, alkaline phosphatase, terminal
		nucleotidyltransferase
METTU JEEVAN KUMAR	BT.B.C	Cloning Vectors: PBR 322, Bacteriophage, Cosmid,
		Phagemid, Shuttle vector
MUDAVATH INDU	BT.B.C	Polymerase Chain Reaction and its applications
P RAJESHWARI	BT.B.C	Structure of prokaryotic and eukartyotic gene
		(promoter, initiator & terminator regions)
		Structure and functions of RNA polymerase
PULAGAM ESHWAR	BT.B.C	Enzymes useful in molecular cloning: Restriction
CHANDRA VIDYA SAGAR		endonuclease, DNA ligases, polynucleotide kinase,
		klenow enzyme, DNA Polymerase- I, reverse
		transcriptase, alkaline phosphatase, terminal
		nucleotidyltransferase
RATHOD KRUTHIK NAIK	BT.B.C	Cloning Vectors: PBR 322, Bacteriophage, Cosmid,
		Phagemid, Shuttle vector
SARE SHIVA PRASAD	BT.B.C	Polymerase Chain Reaction and its applications
SHUBANGINI THAKUR	BT.B.C	Structure of prokaryotic and eukartyotic gene
		(promoter, initiator & terminator regions)
		Structure and functions of RNA polymerase
S PRAVEEN KUMAR	BT.B.C	Enzymes useful in molecular cloning: Restriction
REDDY		endonuclease, DNA ligases, polynucleotide kinase,
		klenow enzyme, DNA Polymerase- I, reverse
		transcriptase, alkaline phosphatase, terminal
		nucleotidyltransferase
TEJAVATH AKHIL	BT.B.C	Blotting techniques

Name of the student	Class	Торіс
BIJJA PAVANI	BT.Z.C	Cloning Vectors: PBR 322, Bacteriophage, Cosmid,
		Phagemid, Shuttle vector
BODDU YASHWANTH	BT.Z.C	Structure of prokaryotic and eukartyotic gene
		(promoter, initiator & terminator regions)
		Structure and functions of RNA polymerase
CHELLURI SRUJANA	BT.Z.C	Transcription mechanism-initiation, elongation &
		proof reading, termination (rho independent & rho
		dependent); basic concept of reverse transcription

		Post transcriptional modification in eukarytotes
DOVUR VEERESH	BT.Z.C	Genetic code- properties, deciphering of genetic
		code, wobble hypothesis, aminoacylation
GUDIPATI SONY	BT.Z.C	Translation mechanism- initiation, elongation and
		termination
GUGLAVATH	BT.Z.C	Gene regulation: Negative & Positive control
VENKATESH		Operon concept, Lac operon, CAP-cAMP system,
		Arabinose operon
KANDUNURI BHARGAVI	BT.Z.C	Enzymes useful in molecular cloning: Restriction
		endonuclease, DNA ligases, polynucleotide kinase,
		klenow enzyme, DNA Polymerase- I, reverse
		transcriptase, alkaline phosphatase, terminal
		nucleotidyltransferase
KANIMELLA SANDHYA	BT.Z.C	Cloning Vectors: PBR 322, Bacteriophage, Cosmid,
		Phagemid, Shuttle vector
M NITHYA KRUTHI	BT.Z.C	Polymerase Chain Reaction and its applications
MUNIGALA SHANKAR	BT.Z.C	Structure of prokaryotic and eukartyotic gene
		(promoter, initiator & terminator regions)
		Structure and functions of RNA polymerase
NAKKA ANUSHA	BT.Z.C	Transcription mechanism-initiation, elongation &
		proof reading, termination (rho independent & rho
		dependent); basic concept of reverse transcription
		Post transcriptional modification in eukarytotes
PALADI SRAVAN KUMAR	BT.Z.C	Genetic code- properties, deciphering of genetic
		code, wobble hypothesis, aminoacylation
PARAKALA MADHAN	BT.Z.C	Translation mechanism- initiation, elongation and
GOUD	_	termination
PERKA PRAVEEN	BT.Z.C	Enzymes useful in molecular cloning: Restriction
		endonuclease, DNA ligases, polynucleotide kinase,
		klenow enzyme, DNA Polymerase- I, reverse
		transcriptase, alkaline phosphatase, terminal
		nucleotidyltransferase
PUTTA SAI KRISHNA	BT.Z.C	Cloning Vectors: PBR 322, Bacteriophage, Cosmid,
		Phagemid, Shuttle vector
RATHOD SHIREESHA	BT.Z.C	Polymerase Chain Reaction and its applications
SABBITHI AISHWARYA	BT.Z.C	Structure of prokaryotic and eukartyotic gene
		(promoter, initiator & terminator regions)
		Structure and functions of RNA polymerase
TALLAPRODDATUR	BT.Z.C	Enzymes useful in molecular cloning: Restriction
DHANUSH		endonuclease, DNA ligases, polynucleotide kinase,
		klenow enzyme, DNA Polymerase- I, reverse
		transcriptase, alkaline phosphatase, terminal
		nucleotidyltransferase
IOPARAM PRANEETH	BT.Z.C	Cloning Vectors: PBR 322, Bacteriophage, Cosmid,
		Phagemid, Shuttle vector
Vaishnavi	BT.Z.C	Structure of prokaryotic and eukartyotic gene
		(promoter, initiator & terminator regions)

		Structure and functions of RNA polymerase
V GOVARDHAN	BT.Z.C	Transcription mechanism- initiation, elongation &
		proof reading, termination (rho independent & rho
		dependent); basic concept of reverse transcription
		Post transcriptional modification in eukarytotes
A THEJA	BT.B.C	Genetic code- properties, deciphering of genetic
		code, wobble hypothesis, aminoacylation
GANTA SRUJAN	BT.B.C	Translation mechanism- initiation, elongation and
		termination
H NAGA RAJU	BT.B.C	Gene regulation: Negative & Positive control
		Operon concept, Lac operon, CAP-cAMP system,
		Arabinose operon
METTU JEEVAN KUMAR	BT.B.C	Enzymes useful in molecular cloning: Restriction
		endonuclease, DNA ligases, polynucleotide kinase,
		klenow enzyme, DNA Polymerase- I, reverse
		transcriptase, alkaline phosphatase, terminal
		nucleotidyltransferase
MUDAVATH INDU	BT.B.C	Cloning Vectors: PBR 322, Bacteriophage, Cosmid,
		Phagemid, Shuttle vector
P RAJESHWARI	BT.B.C	Polymerase Chain Reaction and its applications
PULAGAM ESHWAR	BT.B.C	Structure of prokaryotic and eukartyotic gene
CHANDRA VIDYA SAGAR		(promoter, initiator & terminator regions)
		Structure and functions of RNA polymerase
RATHOD KRUTHIK NAIK	BT.B.C	Transcription mechanism- initiation, elongation &
		proof reading, termination (rho independent & rho
		dependent); basic concept of reverse transcription
		Post transcriptional modification in eukarytotes
SARE SHIVA PRASAD	BT.B.C	Genetic code- properties, deciphering of genetic
		code, wobble hypothesis, aminoacylation
SHUBANGINI THAKUR	BT.B.C	Translation mechanism- initiation, elongation and
		termination
S PRAVEEN KUMAR	BT.B.C	Gene regulation: Negative & Positive control
REDDY		Operon concept, Lac operon, CAP-cAMP system,
		Arabinose operon
TEJAVATH AKHIL	BT.B.C	Enzymes useful in molecular cloning: Restriction
		endonuclease, DNA ligases, polynucleotide kinase,
		klenow enzyme, DNA Polymerase- I, reverse
		transcriptase, alkaline phosphatase, terminal
		nucleotidyltransferase

Plant biotechnology

Name of the student	class	Торіс
BIJJA PAVANI	BT.Z.C	Introduction to plant tissue culture, totipotency of
		plant cells (Dedifferentiation, redifferentiation,
		regeneration of whole plant)
BODDU YASHWANTH	BT.Z.C	Nutritional requirements for plant tissue culture:
		nutrient media – macronutrients and
		micronutrients, media additives (carbon source,
		vitamins, amino acids)
CHELLURI SRUJANA	BT.Z.C	Regeneration of plants (Organogenesis and
		embryogenesis
DOVUR VEERESH	BT.Z.C	Meristem culture and production of disease free
		plants
GUDIPATI SONY	BT.Z.C	
GUGLAVATH	BT.Z.C	Plant growth regulators (cytokinins, auxins,
VENKATESH		gibberellins).
KANDUNURI BHARGAVI	BT.Z.C	Preparation of media, selection and surface
		sterilization of explants, inoculation, incubation
		(temperature and light regime), regeneration of
		plants
KANIMELLA SANDHYA	BT.Z.C	Initiation of callus cultures and cell suspension
		cultures
M NITHYA KRUTHI	BT.Z.C	Regeneration of plants (Organogenesis and
		embryogenesis
MUNIGALA SHANKAR	BT.Z.C	Meristem culture and production of disease free
		plants
NAKKA ANUSHA	BT.Z.C	Methods of cryopreservation for conservation of
		plant germplasm
PALADI SRAVAN KUMAR	BT.Z.C	Somaclonal variation and their applications;
		production of haploids, Anther and pollen culture
PARAKALA MADHAN	BT.Z.C	Embryo culture and embryo rescue; Protoplast
GOUD		culture and fusion, Development of somatic
		hybrids and cybrids and their applications
PERKA PRAVEEN	BT.Z.C	Cell suspension cultures (batch and continuous
		culture) for production of secondary metabolites
PUTTA SAI KRISHNA	BT.Z.C	Micropropogation of elite ornamental,
		horticultural plants via organogenesis and somatic
		embryogenesis, encapsulation and production of
		synthetics seeds
RATHOD SHIREESHA	BT.Z.C	Insect resistant plants: Bt corn, Bt cotton
SABBITHI AISHWARYA	BT.Z.C	Herbicide resistant plants: production of
		glyphosate tolerant plants
TALLAPRODDATUR	BT.Z.C	Transgenic plants as Bioreactor: Antibody
DHANUSH		production in plants, Biodegradable plastics
TOPARAM PRANEETH	BT.Z.C	Stress tolerant plants : Overview of Drought and
		Light stress
Vaishnavi	BT.Z.C	Transgenic plants with enhanced nutritive values:
		Vitamin A, Vitamin

V GOVARDHAN	BT.Z.C	Virus resistant plants: Transgenic plants with viral
		coat protein and viral nucleoprotein
A THEJA	BT.B.C	Regeneration of plants (Organogenesis and
		embryogenesis
GANTA SRUJAN	BT.B.C	Meristem culture and production of disease free
		plants
H NAGA RAJU	BT.B.C	Methods of cryopreservation for conservation of
		plant germplasm
METTU JEEVAN KUMAR	BT.B.C	Somaclonal variation and their applications;
		production of haploids, Anther and pollen culture
MUDAVATH INDU	BT.B.C	Embryo culture and embryo rescue; Protoplast
		culture and fusion, Development of somatic
		hybrids and cybrids and their applications
P RAJESHWARI	BT.B.C	Cell suspension cultures (batch and continuous
		culture) for production of secondary metabolites
PULAGAM ESHWAR	BT.B.C	Micropropogation of elite ornamental,
CHANDRA VIDYA SAGAR		horticultural plants via organogenesis and somatic
		embryogenesis, encapsulation and production of
		synthetics seeds
RATHOD KRUTHIK NAIK	BT.B.C	Insect resistant plants: Bt corn, Bt cotton
SARE SHIVA PRASAD	BT.B.C	Herbicide resistant plants: production of
		glyphosate tolerant plants
SHUBANGINI THAKUR	BT.B.C	Transgenic plants as Bioreactor: Antibody
		production in plants, Biodegradable plastics
S PRAVEEN KUMAR	BT.B.C	Stress tolerant plants : Overview of Drought and
REDDY		Light stress
TEJAVATH AKHIL	BT.B.C	Transgenic plants with enhanced nutritive values:
		Vitamin A, Vitamin

Name of the student	class	Торіс
BIJJA PAVANI	BT.Z.C	Meristem culture and production of disease free
		plants
BODDU YASHWANTH	BT.Z.C	Methods of cryopreservation for conservation of
		plant germplasm
CHELLURI SRUJANA	BT.Z.C	Somaclonal variation and their applications;
		production of haploids, Anther and pollen culture
DOVUR VEERESH	BT.Z.C	Embryo culture and embryo rescue; Protoplast
		culture and fusion, Development of somatic
		hybrids and cybrids and their applications
GUDIPATI SONY	BT.Z.C	Cell suspension cultures (batch and continuous
		culture) for production of secondary metabolites
GUGLAVATH	BT.Z.C	Micropropogation of elite ornamental,
VENKATESH		horticultural plants via organogenesis and somatic
		embryogenesis, encapsulation and production of

		synthetics seeds
KANDUNURI BHARGAVI	BT.Z.C	Insect resistant plants: Bt corn, Bt cotton
KANIMELLA SANDHYA	BT.Z.C	Herbicide resistant plants: production of
		glyphosate tolerant plants
M NITHYA KRUTHI	BT.Z.C	Transgenic plants as Bioreactor: Antibody
		production in plants, Biodegradable plastics
MUNIGALA SHANKAR	BT.Z.C	Stress tolerant plants : Overview of Drought and
		Light stress
NAKKA ANUSHA	BT.Z.C	Transgenic plants with enhanced nutritive values:
		Vitamin A, Vitamin
PALADI SRAVAN KUMAR	BT.Z.C	Virus resistant plants: Transgenic plants with viral
		coat protein and viral nucleoprotein
PARAKALA MADHAN	BT.Z.C	Regeneration of plants (Organogenesis and
GOUD		embryogenesis
PERKA PRAVEEN	BT.Z.C	Meristem culture and production of disease free
		plants
PUTTA SAI KRISHNA	BT.Z.C	Methods of cryopreservation for conservation of
		plant germplasm
RATHOD SHIREESHA	BT.Z.C	Somaclonal variation and their applications;
		production of haploids, Anther and pollen culture
SABBITHI AISHWARYA	BT.Z.C	Embryo culture and embryo rescue; Protoplast
		culture and fusion, Development of somatic
		hybrids and cybrids and their applications
	BI.Z.C	Cell suspension cultures (batch and continuous
	DT 7 0	culture) for production of secondary metabolites
	BI.Z.C	Introduction to plant tissue culture, totipotency of
		plant cells (Dedifferentiation, redifferentiation,
Vaichnavi		Regeneration of whole plant)
Valstinavi	BI.Z.C	nutriional requirements for plant tissue culture:
		microputrients media additives (carbon source
		vitamine, amine acide)
	PT 7 C	Regeneration of plants (Organogenesis and
VGOVARDIAN	DT.Z.C	embryogenesis
Δ ΤΗΕΙΔ	BT B C	Meristem culture and production of disease free
	DT.D.C	nlants
GANTA SRUJAN	BT B C	plants
	BT B C	Plant growth regulators (cytokinins, auxins
	Dilbio	gibberellins).
METTU JEEVAN KUMAR	BT.B.C	Preparation of media, selection and surface
		sterilization of explants, inoculation, incubation
		(temperature and light regime), regeneration of
		plants
MUDAVATH INDU	BT.B.C	Initiation of callus cultures and cell suspension
		cultures
P RAJESHWARI	BT.B.C	Regeneration of plants (Organogenesis and
		embryogenesis

PULAGAM ESHWAR	BT.B.C	Insect resistant plants: Bt corn, Bt cotton
CHANDRA VIDYA SAGAR		
RATHOD KRUTHIK NAIK	BT.B.C	Herbicide resistant plants: production of
		glyphosate tolerant plants
SARE SHIVA PRASAD	BT.B.C	Transgenic plants as Bioreactor: Antibody
		production in plants, Biodegradable plastics
SHUBANGINI THAKUR	BT.B.C	Stress tolerant plants : Overview of Drought and
		Light stress
S PRAVEEN KUMAR	BT.B.C	Transgenic plants with enhanced nutritive values:
REDDY		Vitamin A, Vitamin
TEJAVATH AKHIL	BT.B.C	Insect resistant plants: Bt corn, Bt cotton

ASSIGNMENT-1

SEMI

B.Sc lifesciences

Cell biology and genetics

Name of the student	TOPIC
	Linkage and recombination- Cytological proof of crossing over, phases of
D GOVIND	linkage, recombination frequency, gene mapping and map distance
GOLUSULA SARITHA	Hardy-Weinberg Equilibrium, allelic and genotypic distribution
SAMEERA BEGUM	Chloroplast inheritance in Chlamydomonas
VANKUDOTH MAHESH	Mitochondrial inheritance in human and poky in Neurospora crassa
BANOTH SHASHI	Cytoplasmic male sterility in Maize and Paramecium
KUMAR	
	Non-Mendelian Inheritance – Maternal effect (Shell coilng in snail),
EMMADI AMSHA	variegation in leaves of Mirabilis jalapa
	Mendel's experiments- factors contributing to success of Mendel's
GHOUSIA SAMEE	experiments
	Law of segregation- Monohybrid Ratio; Law of independent assortment-
PADMA MOUNIKA	Dihybrid Ratio,Trihybrid Ratio
	X-Y chromosomes - Sex determination in Drosophila, Birds, Man, Bonellia; X-
	linked inheritance- Hemophilia and Color blindness; X-inactivation; Y-linked
SWARNA HARSHITHA	inheritanceHolandric genes
	Multiple alleleism (eg: Coat color in Rabbits, eye color in Drosophila and ABO
VEERABATHINI NANDINI	Blood groups)
VUTCHURU	Penetrance and Expressivity (eg: Polydactyly, Waardenburg syndrome),
HARINARAYANA	pleiotropism, phenocopy- microcephaly, cleft lip
PRUDHVI	
Y RAMA DEVI	Deviation from Mendel's laws- partial or incomplete dominance (eg: Flower

	Color in Mirabilis jalapa), Co-dominance (eg: MN Blood groups), Non allelic
	interactions-types of epistasis, modification of dihybrid ratios
	Linkage and recombination- Cytological proof of crossing over, phases of
PABBA MANOHAR	linkage, recombination frequency, gene mapping and map distance
GOLI VARSHITHA	Hardy-Weinberg Equilibrium, allelic and genotypic distribution
	Deviation from Mendel's laws- partial or incomplete dominance (eg: Flower
MOHAMMAD ABDUL	Color in Mirabilis jalapa), Co-dominance (eg: MN Blood groups), Non allelic
MUJEEB	interactions-types of epistasis, modification of dihybrid ratios
PATLURI TULASI	Linkage and recombination- Cytological proof of crossing over, phases of
BHAVANI	linkage, recombination frequency, gene mapping and map distance
R ROHINI SRI SAI	Hardy-Weinberg Equilibrium, allelic and genotypic distribution

ASSIGNMENT-2

SEMI

B.Sc lifesciences

Cell biology and genetics

Name of the student	
	Cell as basic unit of living organisms-bacterial,
D GOVIND	fungal, plant and animal
	cells Ultrastructure of prokaryotic cell (cell
GOLUSULA SARITHA	membrane and plasmids, Nucleoid)
	Ultrastructure of eukaryotic cell (cell wall, cell
	membrane, nucleus, mitochondria, chloroplast,
SAMEERA BEGUM	endoplasmic reticulum, Golgi apparatus, vacuoles)
	Fluid mosaic model, Sandwich model, Cell
VANKUDOTH MAHESH	membrane permeability
	Structure of chromosome-morphology,
	components of chromosomes (histones and
	nonhistones), specialized chromosomes (Polytene,
BANOTH SHASHI KUMAR	Lampbrush)
	Chromosomal aberrations- structural and
EMMADI AMSHA	numerical
GHOUSIA SAMEE	Bacterial cell division
PADMA MOUNIKA	Eukaryotic cell cycle – phases
SWARNA HARSHITHA	Mitosis - Stages (spindle assembly)-significance
	Meiosis- Stages (synaptonemal complex)-
VEERABATHINI NANDINI	significance
VUTCHURU HARINARAYANA PRUDHVI	Senescence and necrosis
Y RAMA DEVI	Apoptosis
	cells Ultrastructure of prokaryotic cell (cell
PABBA MANOHAR	membrane and plasmids, Nucleoid)
GOLI VARSHITHA	Ultrastructure of eukaryotic cell (cell wall, cell

	membrane, nucleus, mitochondria, chloroplast,
	endoplasmic reticulum, Golgi apparatus, vacuoles)
	Fluid mosaic model, Sandwich model, Cell
MOHAMMAD ABDUL MUJEEB	membrane permeability
	Structure of chromosome-morphology,
	components of chromosomes (histones and
	nonhistones), specialized chromosomes (Polytene,
PATLURI TULASI BHAVANI	Lampbrush)
R ROHINI SRI SAI	Eukaryotic cell cycle – phases