

Dr. BRR. GOVERNMENT COLLEGE, JADCHERLA, MAHABUBNAGAR (Dist.) Student Study Project 2021 -22

DEPARTMENT OF CHEMISTRY Topic DETERMINATION OF CONTENTS OF TOOTH POWDER

Conducted by students

Name of the Student	Hall Ticket No.	Course
TINGIRIKARI MAHESHWARI	20033006441056	MPC EM II Year
PATHLAVATH SHIRISHA	20033006441044	MPC EM II Year
SABAVATH SANTOSH	20033006441051	MPC EM II Year
Y ANUSHA	20033006441059	MPC EM II Year
PALADI LOKESH KUMAR	20033006441043	MPC EM II Year
SABHAVAT NIRMALA	20033006441052	MPC EM II Year

Guided By Sri N. Sai Kondalu Asst. Prof. of Chemistry

Sign. of the Lecturer

I/C Sign of the HOP

Dr. BRR Govt. Degree Coin JADCHERLA.

Sign, of the RRINCIPAL BRR Govt. College Jadcherla-500 301

Introduction:

Aim is to find the Determination of Contents of Tooth Powder/To test the acid and basic radicals in the toothpowder

Toothpowder is a powder used with hands or with a toothbrush to clean and maintain the aesthetics and health of teeth. Toothpowder is used to promote oral hygiene: it can aid in the removal of dental plaque and food from the teeth, aid in the elimination and/or masking of halitosis and deliver active ingredients such as fluoride or xylitol to prevent tooth and gum disease.

Theory

While the exact formula of each brand of toothpaste is proprietary, most toothpowders contain the same basic ingredients. These include:

Fluoride: Perhaps the most important toothpowders ingredient is fluoride. Fluoride incorporates itself into tooth enamel making your teeth more resistant to acids produced by plaque bacteria, as well as acids found in fruit juices, soda (both regular and diet) and certain foods. In toothpowders, fluoride is found in the form of sodium monofluorophosphate, stannous fluoride, or sodium fluoride.

Abrasives: Abrasives give toothpowders its cleaning power. They remove stains and plaque, as well as polish teeth. Common abrasives include calcium phosphates, alumina, calcium carbonate, and silica. Toothpowders should be abrasive enough to remove plaque and stains, but not abrasive enough to damage tooth enamel. Damaged tooth enamel also causes yellowing as the thinned enamel reveals the yellowish dentin layer below. Over the years, manufacturers have been quietly reducing the abrasiveness of their toothpowders.

Preservatives: Preservatives prevent the growth of microorganisms in toothpowders and

eliminate the need to refrigerate toothpowders. Common preservatives include sodium benzoate, methyl paraben, and ethyl paraben.

Flavoring Agents: These are added to improve the taste of toothpowders. You may have noticed that toothpowders have very strong flavoring. This is necessary to cover up the horrid taste of most detergents, especially SLS.

Sweeteners: Sweeteners also improve the taste of toothpowders. Most toothpowder sweeteners are artificial and contribute very little to cavity formation. Saccharin is a common toothpowder sweetener.

TEST FOR ACID RADICAL I:

EXPERIMENT	OBSERVATION	INTERFERENCE
[A] Dilute H ₂ SO ₄ Test	Colourless, Odorless gas	
Treat the given sample of	evolved with brisk	May be CO ₃ ⁻²
tooth powder with dilute	effervescences which turns	May be CO3
H ₂ SO ₄	lime water milky	
 [B] Conformity test for CO₃ -² (i) MgSO₄ test To the aq. Solution add MgSO₄ solution. 	White ppt formed	CO ₃ ⁻² conformed
(ii) Dilute HCl test		
To the aq. Solution add dilute HCl	Colourless, Odour less gas evolved	CO ₃ ⁻² conformed

TEST FOR ACID RADICAL II

EXPERIMENT	OBSERVATION	INTERFERENCE
[A] Dilute H2SO4 Test	No gas evolved	

Treat the given salt with di	lute		
H_2SO_4			
[B] Concentrated H ₂ SO ₄ te	st		
Heat the given sample v	vith No gas evolved		
Conc. H ₂ SO ₄			
[C] Test for PO ₄ - ³			
To the aq. Solution add		PO ₄ - ³ conformed	
drops of ammon	Deep yellow ppt formed	PO ₄ ^o conformed	
molybdate.			

TEST FOR BASIC RADICAL

Experiment	Observations	Inference
To the given sample add NaOH.	No ammonical smell.	Zero group absent.
[B] Test for I group:		
To the aq. Solution of sample, add dilute HCl.	No ppt. formed.	I group absent.
[C] Test for II group:	No ppt. formed.	II group absent.
To the above solution, pass H 2 S gas.		
[D] Test for III group:	No ppt. formed.	III group absent.
To the aq. Solution of toothpowder add NH 4 Cl followed by NH 4 OH.		
[E] Test for IV group:	No ppt. formed.	IV group absent.
To the above formed solution pass H 2 S gas.		
[F] Test for V group:	White ppt. formed.	V group present.
To the aq. Solution of toothpowder add solid NH 4 Cl, NH 4 OH and (NH 4) 2 CO 3 .		

Result:

The given toothpowder contains anions namely CO_3^{2-} and PO_4^{3-} and cations namely Ca^{2+} .

Conclusion

Several of the ingredients in toothpastes are found by some environmentally damaging or hazardous to the personal health.

These ingredients include:

Artificial flavoring

- Artificial colors
- Triclosan
- Sodium bicarbonate (baking soda)
- Detergents
- Fluoride
- Preservatives such as Methylparaben and Ethylparaben-parabens
- Pyrophosphate

Homemade tooth powders are made by mixing 3 parts baking soda (cleanser) thoroughly with 1 part salt (the abrasive). As a direct result of these concerns, some people have started making

their own tooth paste instead, which -while still not completely ecologic due to the use of baking soda- still eliminates much environmentally or health damaging ingredients. Also, commercial toothpowders are made which are less or even non-environmentally damaging. Such preparations are made from herbal resins, propolis and myrrh.