Dr. BRR. GOVERNMENT COLLEGE,

 JADCHERLA, MAHABUBNAGAR (Dist.) DEPARTMENT OF CHEMISTRY Student Study ProjectEFFECT OF SODIUM CARBONATE ON FOAMING CAPACITY OF THE SOAP

Conducted by students

Conducted by students of the Student	Hall Ticket No.	Course
ALETI MOUNIKA	210330064451001	BZC EM I Year
G NAVEEN	210330064451011	BZC EM I Year
JAVAJI MEENAKSHI	210330064451019	BZC EM I Year
KAVALI RAGHAVENDER	210330064451026	BZC EM I Year
MANEMONI RAJESHWARI	210330064451035	BZC EM I Year
PADIGA ANUSHA	210330064451049	BZC EM I Year

Guided By

J. Vikram Kumar

Asst. Prof. of Chemistry

Sign. of the Lecturer

Introduction:

Aim is to study the effect of addition of sodium carbonate on foaming capacity of a soap. Soaps and detergents are cleaning ingredients that are able to remove oil particles from surfaces because of their unique chemical properties. Soaps are created by the chemical reaction of a jetty acid with on alkali metal hydroxide. In a chemical sense soap is a salt made up of a corboxylix acid and an alkali like sodium of potassium.

The cleaning action of soap and detergents is a result of thrill, ability to surround oil particles on a surface and disperse it in water. Bar soap has been used for centuries and continues to be an important product for batching and cleaning. It is also a mild antiseptic and ingestible antidote for certain poisons.

SOAP

Soap is a common term for a number of related compounds used as of washing clothes or bathing. Soaps are sodium or potassium salts of higher fatty acids such as stearic acid $(\mathrm{C} 17 \mathrm{H} 35 \mathrm{COOH})$, palmittic acid $(\mathrm{C} 15 \mathrm{H} 31 \mathrm{COOH})$ and oleic acid $(\mathrm{C} 17 \mathrm{H} 35 \mathrm{COOH})$ they have the general formula RCOONa and R COONa. Soap is produced by a saponification or basic hydrolysis reaction of a fat or oil. Currently sodium carbonate or sodium hydroxide is used to neutralize the fatty acid and convert it to the salt..

General Overall Hydrolysis Reaction

$$
\begin{aligned}
& \text { Fat }+\mathrm{NaOH} \longrightarrow \text { glycerol }+ \text { sodium salt of } \\
& \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{OH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}+\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COONa}+ \\
& \mathrm{OH} \mathrm{OH}
\end{aligned}
$$

Although the reaction is shown as one step reaction, it is in fact two steps. The net effect as that the ester bonds all broken. The glycerol turns back into an alcohol. The fatty acid is turned into a salt due to the presence of a basic solution of NaOH . In the carboxyl group, one oxygen now has a negative charge that attacts the positive sodium ion. A molecule of soap consists of two parts.
a) Alkyl group - it is oil soluble
b) Carboxyl group - It is water soluble

The type of fatty acid and length of the carbon chain determines the unique properties of various soaps. Tallow or animal fats give primarily sodium stearate (18 carbons) a very hard, insoluble soap. Fatty acids with longer chains are even more insoluble. As a matter of fact, 3inc stearate is used in talcum powders because it is water repellent. Coconut oil is a source of lauric acid (12 carbons) which can be made into sodium laurate. This soap is very soluble and will lather easily even in sea water. Fatty acids with only 10 or fewer carbons are not used in soaps because they irritate the skin and have objectionable odors

Materials Required:
(a) Apparatus One 100 ml conical flask, 20 ml test tubes, 100 ml measuring cylinder, test tube stand, weight box, stop watch and burner.
(b) Chemicals Soap samples, distilled water, tap water and $\mathrm{m} / 10 \mathrm{Na} 2 \mathrm{Co} 3$ solution.

Theory

Calcium and magnesium ions present in the tap water interfere in the foaming capacity of soap. These ions combine with soap and form insoluble calcium and magnesium salts which get precipitated

$$
2 \mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COONa}+\mathrm{Ca}^{2+} \longrightarrow\left(\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COO}\right)_{2} \mathrm{Ca}+2 \mathrm{Na}^{+} .
$$

Therefore, the presence of these ions effect the foaming capacity of soap and hence their cleaning capacity. When Na 2 CO 3 is added to the tap water, calcium and magnesium ions gets precipitated as their carbonates in the presence of Na 2 CO 3

$$
\begin{aligned}
& \mathrm{Ca}^{2+}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{CaCO}_{3}+2 \mathrm{Na}^{+} \\
& \mathrm{Mg}^{2+}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{MgCO}_{3}+2 \mathrm{Na}^{+}
\end{aligned}
$$

Foaming capacity of the water increases. In order determine the effect of NO 2 CO 3 on the foaming capacity of asample of soap it is first shaken with distrilled water there with top water and finally with top water containing equal volume of $\mathrm{M} / 10 \mathrm{Na} 2 \mathrm{CO} 3$ solution and then the time taken for siroppealance of foam it noted

Procedure

1. Weigh accurately 0.5 g of the given amount of soap and transfer to a 100 ml of conical flask. Add 50 ml of distilled water and worm to dissolve till clear solution is obtained.
2. Take three 20 ml test tubes and label them as 1,2 and A, B and C . To test tube A add 10 ml of distilled water, to test tube C add 5 ml of tap water 5 ml of $\mathrm{M} / 10 \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution.
3. Add 1 ml of soap solution to each tube.
4. Cork test tube A tightly and shake vigorously for 1minute. Place the test tube on the test tube stand and start the stop watch immediately. Note the taken for the disappearance of foam.
5. Repeat the same procedure for test tube B and C, rate the time taken for the disappearance of foam

Observation Table

Weight of soap taken $=0.5 \mathrm{~g}$
Volume of distilled water taken for preparing solution $=50 \mathrm{ml}$

Tube	Water used	Vol. of soap sol added	Time taken for the oisappearance of foam
1	10.00 ml distrilled water (A)	1.00 ml	8.30 hrs
2	10 ml of tap water (B)	1.00 ml	6.30 hrs
3	$5.00 \quad \mathrm{ml}$ of tap water and 5.00 ml $\mathrm{m} / 10 \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{C})$		

Conclusion

- Foaming capacity of tap water increases on addition of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution.

