

 GOVT.DEGREE COLLEGE

 ARMOOR (T.S.)

Student Study Project Report

on

EMAIL SYSTEM
For the Academic Year 2020-21

Submitted by:

CH.AKHILA

Roll No: 19055010468009

CH.NAVEEN

Roll No: 19055010468010

CH.PRIYANKA

Roll No: 19055010468008

U.SUPRIYA

Roll No: 19055010468029

U.GOUTHAMI

Roll No: 19055010468028

Guided by:

Lecturer. J.SUDEEP KUMAR

Department of computer science

Head of the Department:

Asst.Prof. A.RAJESH

Department of Chemistry

Table of contents

 Abstract

 Software Development Methodology

 Introduction
1. Purpose
2. Advantages
3. Scope
4. Existing System with Limitations

5. Proposed System Features

 Specification Requirements
1. Software Requirement Specification
2. Hardware requirement Specification
3. Functional Requirements

 Technologies Used
1. Servlet
2. Oracle 10g Express Edition
3. Apache Tomcat 7.02

 Behavioral Description
1. DFD
2. User Case Diagram
3. Activity Diagrams
4. Oracle Database Tables

 System Design
1. Sequence and Collaboration Diagram
2. Class Diagrams

 Testing and Implementation

 Output Results

 Coding

 Conclusion

 Bibliography

ABSTRACT

ABOUT THE PROJECT

Businesses usually adopt a common sense approach when it comes to

spending the IT budget with cost being a major influence in purchasing

decisions. However, when it comes to choosing a mail server, many

businesses seem to pay less attention to the costs and, as a result, end

up spending far more money than is necessary.

Today, email is absolutely mission-critical. Communication and

collaboration keep your business running. Email and electronically

enabled collaboration have become so embedded in normal day-to-day

operations that many businesses simply could not function without

them. Many businesses, however, have found that the cost of providing

employees with the latest in messaging and collaboration technology is

rapidly escalating. To meet modern business needs, mail servers have

had to become more complex – and with that additional complexity come

additional management burdens and costs. Furthermore, some mail

servers have an upgrade process that is both extremely complex and

extremely costly and which may necessitate the purchase of replacement

server hardware. Combined, these factors place a considerable drain on

corporate resources. The problem is especially severe for small and

medium sized businesses (SMBs) which usually do not have access to

the same financial or technical resources as large enterprises.

Email-System Is An Application Program That Sends Electronic Message

From One Computer To Another. We will be developing our Project to

keep in Mind the Problem of Organization and also We Will Try To

Minimize Cost for Organization.

Introduction

INTRODUCTION

This project deals with the Mailing System. This project is having

different modules like new User creation form named it as a Sign-Up form and

already existing user can logged into the Mailing System named it as a Sign In

form.

Email System(or Internet Mailing System) which has been privatized and

is existing in different forms like Hotmail. Free mail. Cyber mail, Mainly The

project will give the easy way to create a new account and sending mails with

free of cost.

Advantages:

The user of Email System is given a unique login id and must give the

correct password. It gives total security for us. So unauthorized user can't

allow to see our messages. Even if the user forgets his/her password reminding

facility by which the user can recollect the password and log into the system.

The advantage of the this system is it's security feature allowing only

registered users to access the system and preventing any hackers,

unauthorized users.

Existing System with Limitations:

Presenting Intranet Mailing is manually providing services to employees

of departments of an Organization. Employees have to go departments to know

some particular information. Sometimes information is passed by manually

between departments. This manual system will take time to pass the

information and sometimes it causes lost of information also. This causes lost

of employee time also.

Proposed System Features:

Now a day the organizations are growing fastly and are increasing in size

also. So there organizations are divided into departments. In the fast growing

world the information is need as fast as possible. This can be accomplished by

passing the information quickly. Quick passing of mails is not possible in load

manual systems. Because in manual system the mails are passed through

persons from one department to another. But it takes mush time and risk also.

This leads the inconsistency of information. So we need a system, which is

both quick and accurate. This can be achieved by mailing system.

 In present organization structure most of the work is done using

software applications. In order to improve service for customers we need

effective applications. Similarly considering need of work flow we need intranet

mailing application.

SPECIFICATION

REQUIREMENT

SPECIFICATION REQUIREMENT

Requirement analysis for web applications encompasses three major tasks:

formulation, requirements gathering and analysis modeling. During

formulation, the basic motivation and goals for the web application are

identified, and the categories of users are defined. In the requirements

gathering phase, the content and functional requirements are listed and

interaction scenarios written from end-user’s point-of-view are developed. This

intent is to establish a basic understanding of why the web application is built,

who will use it, and what problems it will solve for its users.

Software requirement Specification:

 A set of programs associated with the operation of a computer is called

software. Software is the part of the computer system, which enables the user to

interact with several physical hardware devices.

The minimum software requirement specifications for developing this project

are as follows:

Operating System : Window 2000, XP,Win 7,Win 8.

Presentation layer : Java, Servlets.

Database : Oracle

Documentation Tool : Ms Office

Hardware Requirement Specification:

The collection of internal electronic circuits and external physical devices used

in building a computer is called the Hardware. The minimum hardware requirement

specifications for developing this project are as follows:

Processor : Standard processor with a speed of 1.6 GHz or more

RAM : 256 MB RAM or more

Hard Disk : 20 GB or more

Monitor : Standard color monitor

TECHNOLOGIES

USED

TECHNOLOGIES USED

 Servlets:-

A servlet is a java programming language class that is used to extend the

capabilities of servers that host applications access via a request-response

programming mode. Servlets are Java technology’s answer to Common

Gateway Interface (CGI) Programming. They are programs that run on a Web

server, acting as middle layer between request coming from a Web browser or

other HTTP client and databases of applications on the HTTP server.

Read any data sent by the user: This data usually entered in a form on a Web

page, but could also come from a java applet or a custom HTTP client program.

Look up any other information about the request that is embedded in the

HTTP request: This information includes details about browser capabilities,

cookies, the host name of the requesting client, and so froth.

Generate the results: This process may require talking to a database,

executing an RMI or CORBA call, invoking a legacy application, or computing

the response directly.

Format the results inside a document: In most cases, this involves

embedding the information inside an HTML page.

Set the appropriate HTTP response parameters: This means telling the

browser what type of document is being returned (e.g.HTML), setting cookies

and caching parameters, and other such tasks.

Send the document back to the client: This document may be sent in text

format (HTML), binary format (GIF images), or even in a compressed format like

gzip that is layered on top of some other underlying format.

The Javax.servlet and javax.servlet.http packages provide interfaces and

classes for writing servlets. All servlets must implement the Servlet interface,

which defines life-cycle methods. When implementing a generic service, you

can use or extend the GenericServlet class provided with the java Servlet API.

The HttpServlet classes provide methods, such as doGet and do Post, for

handling HTTP-specific services.

To be a servlet, a class should extend HTTPServlet and override doGet or

do Post (or both), depending on whether the data is being sent by GET or by

POST. These methods take two arguments: An HttpServletRequest and an

HttpServletResponse.The HttpServletRequest have methods that let you find

out about incoming information such as FORM data, HTTP request headers,

and the like. Finally, note that doGet and do Post are called by the service

method, and sometimes you may want to override service directly.

Servlet Life Cycle:

The life cycle of a servlet is controlled by the container in which the servlet has

been deployed. When a request is mapped to a servlet, the container performs

the following steps.

1. If an instance of the servlet does not exist, the Web container:

Loads the servlet class.

Creates an instance of the Servlet class.

Initializes the servlet instance by calling the init method.

2. Invokes the service method, passing request and response objects.

If the container needs to remove the servlet, it finalizes the servlet by calling

the servlet’s destroy method.

Cookies

 Cookies are small bits of textual information that a Web server sends to a

browser and that the browser returns unchanged when visiting the same Web site or

domain later

Browsers generally only accept 20 cookies per site and 300 cookies total, and each

cookie is limited to 4KB, cookies cannot be used to fill up someone's disk or launch

other denial of service attacks.

The Servlet Cookie API

To send cookies to the client, a servlet would create one or more cookies with

the appropriate names and values via new Cookie (name, value), set any

desired optional attributes via cookie.setXxx,and add the cookies to the

response headers via response.addCookie(cookie).To read incoming cookies,

call request.getCookies(), which returns an array of Cookie objects. Session

Management

Many applications require that a series of requests from a client be associated

with one another. Sessions are represented by an Http Session object. A

session can be accessed by calling the get Session () method of a request object.

This method returns the current session associated with this request, or, if the

request does not have a session, it creates one. The timeout period can be

accessed by using a session’s [get\set] Max Inactive Interval methods.

Session Tracking

A Web container can use several methods to associate a session with a user, all

of which involve passing an identifier between the client and the server. The

identifier can be maintained on the client as a cookie, or the Web component

can include the identifier in every URL that is returned to the client.

 In fact, on many servers, they use cookies if the browser supports them, but

automatically revert to URL-rewriting when cookies are unsupported or

explicitly disabled.

The Session Tracking API

 Using sessions in servlets is quite straightforward, and involves looking up

the session object associated with the current request, creating a new session

object when necessary, looking up information associated with a session,

storing information in a session, and discarding completed or abandoned

sessions.

Oracle 10g Express Edition

Oracle® Database Express Edition

 Logging in as the Database Administrator

 Unlocking the Sample User Account
 Logging in as the Sample User Account

 Creating a Simple Application

 Running Your New Application

 Using the Oracle Database XE Menus
 Learning More About Oracle Database XE

 Documentation Accessibility

1 Logging in as the Database Administrator

The first thing you need to do is to log in as the Oracle Database XE

Administrator. Follow these steps:

1. Open the Database Home Page login window:
 On Windows, from the Start menu, select Programs (or All

Programs), then Oracle Database 10g Express Edition, and

then Go To Database Home Page.
 On Linux, click the Application menu (on Gnome) or the K menu

(on KDE), then point to Oracle Database 10g Express Edition,

and then Go To Database Home Page.
At the Database Home Page login window, enter the following information:

 Username: Enter system for the user name.

 Password: Enter the password that was specified when Oracle

Database XE was installed.

Click Login.

file:///C:/oraclexe/app/oracle/doc/getting_started.htm%23BABDBJBC
file:///C:/oraclexe/app/oracle/doc/getting_started.htm%23CHDEDICH
file:///C:/oraclexe/app/oracle/doc/getting_started.htm%23CHDJDFIF
file:///C:/oraclexe/app/oracle/doc/getting_started.htm%23CHDGDHID
file:///C:/oraclexe/app/oracle/doc/getting_started.htm%23CHDDGDFI
file:///C:/oraclexe/app/oracle/doc/getting_started.htm%23CHDDEECH
file:///C:/oraclexe/app/oracle/doc/getting_started.htm%23CHDDDIHE
file:///C:/oraclexe/app/oracle/doc/getting_started.htm%23CIHCHIBF

The Oracle Database XE home page appears.

Description of the illustration gs_home_page.gif

2 Unlocking the Sample User Account

To create your application, you need to log in as a database user. Oracle

Database XE comes with a sample database user called HR. This user owns a

number of database tables in a sample schema that can be used to create
applications for a fictional Human Resources department. However, for security

reasons, this user's account is locked. You need to unlock this account before

you can build a sample application.

To unlock the sample user account:

1. Make sure you are still logged on as the database administrator, as
described in the previous section.

2. Click the Administration icon, and then click Database Users.

file:///C:/oraclexe/app/oracle/doc/img_text/gs_home_page.htm

3. Click the HR schema icon to display the user information for HR.

Description of the illustration gs_hr_icon.gif

4. Under Manage Database User, enter the following settings:
 Password and Confirm Password: Enter hr for the password.

 Account Status: Select Unlocked.

 Roles: Ensure that both CONNECT and RESOURCE are enabled.

Click Alter User.

Now you are ready to create your first application.

3 Logging in as the Sample User Account

To log in as the sample user account:

1. Log out from the database administrator account by clicking Logout in
the upper right corner of the Database Home Page.

2. In the window, click Login.

3. In the Login window, enter hr for both the user name and password.

4. Click Login.

The Database Home Page appears.

4 Creating a Simple Application

Creating an application is an easy way to view and edit your database data.

You create this application based on the EMPLOYEES table, which is part of

the HR schema.

To create an application based on the EMPLOYEES table:

1. On the Database Home Page, click the Application Builder icon.
2. Click the Create button.

3. Under Create Application, select Create Application and click Next.

4. Under Create Application:

a. Name: Enter MyApp.
b. Accept the remaining defaults.

c. Click Next.

Next, add pages to your application.

file:///C:/oraclexe/app/oracle/doc/img_text/gs_hr_icon.htm

5. Under Add Page:

a. For Select Page Type, select Report and Form.

Description of the illustration gs_report_and_form.gif

Notice that Action describes the type of page you are adding.

b. Next to the Table Name field, click the up arrow, and then
select EMPLOYEES from the Search Dialog window.

c. Click Add Page.

Two new pages display at the top of the page, under Create

Application.

Description of the illustration gs_two_new_pages.gif

d. Click Next.
6. On the Tabs panel, accept the default (One Level of Tabs) and

click Next.

7. On the Shared Components panel, accept the default (No) and

click Next.

This option enables you to import shared components from another

application. Shared components are common elements that can display

or be applied on any page within an application.

8. For Authentication Scheme, Language, and User Language Preference
Derived From, accept the defaults and click Next.

9. For the theme, select Theme 2 click Next.

Themes are collections of templates that you can use to define the layout

and style of an entire application.

file:///C:/oraclexe/app/oracle/doc/img_text/gs_report_and_form.htm
file:///C:/oraclexe/app/oracle/doc/img_text/gs_two_new_pages.htm

10. Confirm your selections. To return to a previous wizard page,

click Previous. To accept your selections, click Create.

After you click Create, the following message displays at the top of the

page:

Application created successfully.
5 Running Your New Application

To run your application:

1. Click the Run Application icon.

Description of the illustration gs_run_ico_sm.gif

2. In the log in page, enter hr for both the User Name and Password.

Your application appears, showing the EMPLOYEES table.

3. Explore your application.

You can query the EMPLOYEES table, if you want. To manage the

application, use the Developer toolbar at the bottom on the page.

Description of the illustration gs_d_toolbar.gif

The Developer toolbar offers a quick way to edit the current page, create
a new page, control, or component, view session state, or toggle

debugging or edit links on and off.

4. To exit your application and return to Application Builder, click Edit

Page 1 on the Developer toolbar.
5. To return to the Database Home Page, select the Home breadcrumb at

the top of the page.

Description of the illustration gs_bread_myapp.gif

file:///C:/oraclexe/app/oracle/doc/img_text/gs_run_ico_sm.htm
file:///C:/oraclexe/app/oracle/doc/img_text/gs_d_toolbar.htm
file:///C:/oraclexe/app/oracle/doc/img_text/gs_bread_myapp.htm

Congratulations! You have just created your first application using

Oracle Database XE.

6 Using the Oracle Database XE Menus

You can use the Oracle Database XE menus to perform basic functions with

Oracle Database XE. To see the menus, do the following:

 On Windows, from the Start menu, select Programs (or All Programs)
and then Oracle Database 10g Express Edition.

 On Linux, click the Application menu (on Gnome) or the K menu (on

KDE) and then point to Oracle Database 10g Express Edition.

The following menu items are available:

 Get Help: Displays the following selections:
o Go To Online Forum: Displays the online forum for discussions

about Oracle Database XE.

o Read Documentation: Displays the Oracle Database XE

documentation library on the Internet.
o Read Online Help: Displays the Oracle Database XE online help.

This help is only available if the database is started.

o Register For Online Forum: Allows you to register for the Oracle
Database XE online forum.

 Backup Database: In NOARCHIVELOG mode (the default), shuts down

the database, backs it up, and then restarts it. In ARCHIVELOG mode,
performs an online backup of the database. For more information on

backups, refer to Oracle Database Express Edition 2 Day DBA.

 Get Started: Link to this tutorial.

 Go To Database Home Page: Displays the Oracle Database XE Home
Page in your default browser. "Logging in as the Database

Administrator" explains how to log into this home page as a database

administrator.
 Restore Database: Shuts down and then restores the database to the

most recent backup. For more information on restoring a database, refer

to Oracle Database Express Edition 2 Day DBA.
 Run SQL Command Line: Starts the SQL Command Line utility for

Oracle Database XE. To connect to the database, issue the following

command at the SQL prompt that appears:

 connect username/password

where username is the user name, such as sys, system, or another

account name, and password is the password that was assigned when

Oracle Database XE was installed. The get help, you can enter the

http://www.oracle.com/pls/xe102/to_bookid?id=XEDBA
file:///C:/oraclexe/app/oracle/doc/getting_started.htm%23BABDBJBC
file:///C:/oraclexe/app/oracle/doc/getting_started.htm%23BABDBJBC
http://www.oracle.com/pls/xe102/to_bookid?id=XEDBA

commandhelp at the SQL prompt, once you have connected to the

database.

 Start Database: Starts Oracle Database XE. By default, the database is

started for you after installation and every time your computer is
restarted. However, if you think the database is not running you can use

this menu item to start it.

 Stop Database: Stops Oracle Database XE.

Tomcat:-

Apache Tomcat is the servlet container that is used in the official Reference

Implementation for the Java Servlet and Java Server Pages technologies. The

Java Servlet and Java Server Pages specifications are developed by Sun under

the Java Community Process.

Tomcat 5 implements the Servlet 2.4 and Java Server Pages 2.0

specifications and includes many additional features that make it a useful

platform for developing and deploying web applications and web services.

Directories and files: Directories and Files

$CATALINA_HOME represents the root of your Tomcat installation.

When we say, "This information can be found in your

$CATALINA_HOME/README.txt file" we mean to look at the README.txt file

at the root of your Tomcat install.

These are some of the key tomcat directories, all relative to

$CATALINA_HOME:

 /bin - Startup, shutdown, and other scripts. The *.sh files (for

Unix systems) are functional duplicates of the *.bat files (for

Windows systems). Since the Win32 command-line lacks certain

functionality, there are some additional files in here.

 /conf - Configuration files and related DTDs. The most important

file in here is server.xml. It is the main configuration file for the

container.

 /logs - Log files are here by default.

 /webapps - This is where your webapps go.

INSTALLING TOMCAT

Installing Tomcat on Windows can be done easily using the Windows installer.

Installation as a service: Tomcat will be installed as a Windows NT/2k/XP

service no matter what setting is selected. Using the checkbox on the

component page sets the service as "auto" startup, so that Tomcat is

automatically startup when Windows starts. For optimal security, the service

should be affected a separate user, with reduced permissions (see the Windows

Services administration tool and its documentation).

 Java location: The installer will use the registry or the

JAVA_HOME environment variable to determine the base path of

the JDK or a JRE. If only a JRE (or an incorrect path) is specified,

Tomcat will run but will be unable to compile JSP pages at

runtime. Either all webapps will need to be precompiled (this can

be easily done using the Tomcat deployed), or the lib\tools. Jar file

from a JDK installation must be copied to the common\lib path of

the Tomcat installation.

Architecture Overview

Server: In the Tomcat world, a Server represents the whole container. A Server

element represents the entire Catalina servlet container. Therefore, it must be

the single outermost element in the conf/server.xml configuration file. Its

attributes represent the characteristics of the servlet container as a whole.

Tomcat provides a default implementation of the Server interface, and this is

rarely customized by users.

Engine

An Engine represents request processing pipeline for a specific Service. As

a Service may have multiple Connectors, the Engine received and

processes all requests from these connectors, handing the response back

to the appropriate connector for transmission to the client.

Service

A Service is an intermediate component which lives inside a Server and

ties one or more Connectors to exactly one Engine. The Service element

is rarely customized by users, as the default implementation is simple

and sufficient: service interface.

Host

A Host is an association of a network name, e.g. www.yourcompany.com,

to the Tomcat server. An Engine may contain multiple hosts, and the Host

element also supports network aliases such as yourcompany.com and

abc.yourcompany.com. Users rarely create custom Hosts because the

Standard Host implementation provides significant additional

functionality.

Connector

A Connector handles communications with the client. There are multiple

connectors available with Tomcat, all of which implement the Connector

interface These include the Coyote connector which is used for most

HTTP traffic, especially when running Tomcat as a standalone server,

and the JK2 connector which implements the AJP protocol used when

connecting Tomcat to an Apache HTTPD server. Creating a customized

connector is a significant effort.

Context

A Context represents a web application. A Host may contain multiple

contexts, each with a unique path. The Context interface may be

implemented to create custom Contexts, but this is rarely the case

because the Standard Context provides significant additional

BEHAVIORAL

DESCRIPTION

functionality.

BEHAVIORAL DESCRIPTION

 Data Flow:

There are 2 types of Dfd’s they are

1. Context Level DFD

2. Top Level DFD

Context Level DFD:

In the Context Level the whole system is shown as a single process.

 No data stores are shown.

 Inputs to the overall system are shown together with data sources (as

External entities).

 Outputs from the overall system are shown together with their

destinations (as External entities).

4.1.1 DFD:

Top Level DFD:

The Top Level DFD gives the overview of the whole system identifying the major

system processes and data flow. This level focuses on the single process that is

drawn in the context diagram by ‘Zooming in’ on its contents and illustrates

what it does in more detail.

4.1.2. Use Case Documentation:

 Use Case Diagram

 A use case diagram is a diagram that shows a set of use cases and

actors and relationships.

 Contents

 Use case commonly contain

 Use cases

 Actors

 Dependency, generalization and association relationships

Overall Use Case

Register

Login

Inbox

Compose

Send

Download

User

Update Profile

Process Flow

Activity Diagrams:

Activity Diagram:

 An activity diagram shows the flow from activity to activity. An activity is an

ongoing non- atomic execution within a state machine.

 Activities ultimately result in some action, which is made up of executable

atomic computations that result in a change in state of the system or the

return of a value.

 Activity diagrams commonly contain

 Activity states and action states

 Transitions

 Objects

 Like all other diagrams, activity diagrams may contain notes and

constrains.

Login Process

Providing
Services

Validation

Retry

Services

<<No>>

<<YES>>

Registration Process :

admin validation

Invalidate
details

<<NO>>

Provide
Credentials

<<YES>>

Providing
Services

User Activity:

Login

validation

Inbox Compose Send Mail Download
attachement

Address
book

options

Logout

SYSTEM DESIGN

SYSTEM DESIGN

The main focus of the analysis phase of Software development is on “What

needs to be done”. The objects discovered during the analysis can serve as the

framework or Design. The class’s attributes, methods and association identified

during analysis must be designed for implementation language. New classes

must be introduced to store intermediate results during the program execution.

Emphasis shifts from the application domain o implementation and

computer such as user interfaces or view layer and access layer. During

analysis, we look at the physical entities or business objects in the system, that

is, which players and how they cooperate to do the work of the application.

These objects represent tangible elements of the business.

During the Design phase, we elevate the model into logical entities, some

of which might relate more to the computer domain as people or employees.

Here his goal is to design the classes that we need to implement the system the

difference is that, at this level we focus on the view and access classes, such as

how to maintain information or the best way o interact with a user or present

information.

Design process:

During the design phase the classes identified in object-oriented analysis Must

be revisited with a shift focus to their implementation. New classes or attribute

and Methods must be an added for implementation purposes and user

interfaces. The object-oriented design process consists of the following

activities:

1. Apply design axioms to design classes, their attributes, methods,

associations, structure

And protocols Refine and complete the static UML class diagram by adding

details to the UML diagram. This step consists of following activities. *Refine

attributes *Design methods and protocols by utilizing a UML activity diagram

to represent the method’s algorithms.

*Refine associations between classes

*Refine class hierarchy and design with inheritance

*Iterate and refine again

2. Design the access layer

 Create mirror classes: For every business class identified and created.

For

 example, if there are three business classes, create three access layer

classes.

 Identify access layer class relationships.

 Simplify classes and their relationships: The main goal here is to

eliminate

 redundant classes and structures.

 *Redundant classes: Do not keep two classes that perform similar

translate results

 activities. Simply select one and eliminate the other.

 *Method classes: Revisit the classes that consist of only one or two

methods to see if they can be eliminated or combined with existing

classes.

 Iterate and refine again.

 Define the view layer classes

 Design the macro level user interface, identifying view layer

objects.

 Design the micro level user interface, which includes these

activities:

 * Design the view layer objects by applying the design axioms and

 corollaries.

 * Built a prototype of the view layer interface.

 Test usability and user satisfaction

 Iterate and refine.

3. Iterate refine the whole design process. From the class diagram, you can

begin to extrapolate which classes you will have to built and which existing

classes you can reuse. As you do this, also begin this, also begin thinking

about the inheritance structure. If you have several classes that seem

relates but have specific differences.

Design also must be traceable across requirements, analysis, design from

the Requirements model.

DESIGN AXIOMS

Axioms are a fundamental truth that always is observed to be valid and

for which there is no counter example or exception. Such explains that axioms

may be hypothesized form a large number of observations by nothing the

common phenomena shared by all cases; they cannot be proven or derived, but

they can be invalidated by counter examples or exceptions. A theorem is a

proposition that may not be self-evident but can be proven from accepted

axioms. If therefore, is equivalent to a law or principle. A corollary is a

proposition that follows from an axioms or another proposition that has been

proven. Again, corollary is shown to be valid or not valid in the same manner

as a theorem. In the two important axioms axiom 1 deals with relationships

between system components and axiom 2 deals with the complexity of design.

The following the two important axioms:

Axiom 1: The independence axiom, which maintain the independence of the

components.

Axiom 2: The information axioms that maintain the information content of the

design.

Axioms1 states that, during the design process, as we go from requirement and

use case to a system component, each component must satisfy that

requirement without affecting other requirements.

An axiom 2 is concerned with simplicity. Scientific theoreticians often rely on a

general rule known as Occam’s razor, after William of Occam. He says, “The

best theory explains the known facts with a minimum amount of complexity

and maximum simplicity and straightforwardness.”

The best designs usually involve the least complex code but not necessarily the

fewest number of classes or methods. Minimizing complexity should be the

goal, because that produces the most easily maintained and enhanced

application. In an object-oriented system, the best way to minimize complexity

is to use inheritance and the systems built in classes and to add as little as

possible to what already is there.

From the two design axioms, many corollaries may be derived as a direct

consequence of the axioms. These corollaries may be more useful in marking

specific design decisions, since they can be applied to actual situations.

1. Uncoupled design with less information content: Highly cohesive objects

can improve coupling because only a minimal amount of essential

information need be passed between objects. The degree or strength of

coupling between two components is measured by the amount and

complexity of information transmitted between them.

2. Single purpose: Each class must have single, clearly defined purposes.

3. Large number of simple classes: Keeping the classes simple allows

reusability. Large and complex classes are too specialized to be

reused.

4. Strong mapping: There must be a strong association between the

physical system and logical design. During the design phase, we need to

design this class, design its methods, its association with other objects.

So a strong mapping links classes should be identified.

5. Standardization: promote standardization by designing interchangeable

and reusing existing classes or components.

6. Design with inheritance: Common behavior must be moved to super

classes. The super class-sub class structure must make logical sense.

Refining attributes and methods:

Attributes identified in object oriented analyzed must be refined in the

design phase. In the analysis phase, the name of the attributes was sufficient.

But in the design phase, detailed information must be added to the model. The

three basic types of attributes are:

1. Single valued attributes: This has only value or state.

2. Multiplicity or multivalue attributes: This has a collection of many values

at any point in time.

3. Instance connection attributes: This is required to provide the mapping

needed by an object to fulfill its responsibilities.

UML attribute presentation:

Visibility name: type-expression=initial-value

Visibility indicates either public visibility or protected visibility or private

visibility. The public visibility indicates that the attribute can be accessible to

all classes. The protected visibility indicates that the accessibility is given to the

subclasses and operations of the class. The private visibility indicates that the

accessibility can be given only to the operations of the class only.

Type expression is a language dependent specification of the implementation

type of an attribute. Initial value is a language dependent expression for the

initial value is optional.

5.1 Sequence and collaboration diagrams
Sequence Diagram

 An interaction diagram shows an interaction, consisting of a set of objects and

their relationships, including the messages that may be dispatched among

them.

 A sequence diagram is an interaction diagram that emphasizes the time

ordering of messages.

 Graphically, a sequence diagram is a table that shows objects arranged along x-

axis and messages, ordered in increasing time, along the y-axis.

Contents

 Sequence diagrams commonly contain the following:

 Objects

 Links

 Messages

Like all other diagrams, sequence diagrams may contain notes and constrains

Sequence:

 : User

Register Login Inbox Compose Mail AddressBook Update Profile

Fill Form

response

valid

LoginRequest
valid

response

select

response

compose

response

Add contacts

response

update personal details

response

Collaboration Diagram

- Collaboration is a society of classes, interfaces, and other elements that

work together to provide some cooperative behavior that’s bigger than the sum

of all its parts.

- Collaboration is also the specification of how an element, such as a

classifier or an operation, is realized by a set of classifiers and associations

playing specific roles used in a specific way

Contents

Collaboration diagrams commonly contain the following:

 Objects

 Links

 Messages

Like all other diagrams, sequence diagrams may contain notes and constrains.

Collaboration

 : User

Register

Login

Inbox
Compose

Mail

AddressBo
ok

Update
Profile

2: valid

5: valid

7: select

8: response
9: compose

10: response

11: Add contacts

12: response

13: update personal details

14: response

1: Fill Form

3: response

4: LoginRequest

6: response

 Component Diagram:

Inbox

MailUser

Compose Check

Database-
JDBC

Deployment Diagram

- A deployment diagram is a diagram that shows the configuration of run

time processing nodes and the components that live on them.

- Graphically, a deployment diagram is collection of vertices and arcs.

Contents

- Deployment diagram commonly contain the following things:

 Nodes

 Dependency and association relationships

- Like all other diagrams, deployment diagrams may contain notes and

constraints.

- Deployment diagrams may also contain components, each of which must

live on some node.

- Deployment diagrams may also contain packages or subsystems, both of

which are used to group elements of your model into larger chunks.

USER

Web
Browser

Servlets
Application

Application Server

J2SE
Server

Database Server

MySQL Server

ORACLE DATA BASE TABLES

Table Name:- sssitmail_users

Column Name Data Type Nullable Default Primary Key

ID NUMBER No - 1

FIRSTNAME VARCHAR2(4000) Yes - -

LASTNAME VARCHAR2(4000) Yes - -

EMAIL VARCHAR2(4000) Yes - -

GENDER VARCHAR2(4000) Yes - -

CITY VARCHAR2(4000) Yes - -

STATE VARCHAR2(4000) Yes - -

COUNTRY VARCHAR2(4000) Yes - -

REGISTEREDDATE DATE Yes - -

DOB DATE Yes - -

Table Name:- sssitmail_message

Column Name Data Type Nullable Default Primary Key

ID VARCHAR2(4000) No - 1

SENDER VARCHAR2(4000) Yes - -

RECEPIENT VARCHAR2(4000) Yes - -

SUBJECT VARCHAR2(4000) Yes - -

MESSAGE VARCHAR2(4000) Yes - -

MESSAGEDATE VARCHAR2(4000) Yes - -

TRASH VARCHAR2(4000) Yes - -

1 - 7

TESTING AND

IMPLEMENTATION

TESTING AND IMPLEMENTATION

 Testing Methodologies

o Black box Testing:

o White box Testing.

o Gray Box Testing.

 Levels of Testing

o Unit Testing.

o Module Testing.

o Integration Testing.

o System Testing.

o User Acceptance Testing.

 Types Of Testing

o Smoke Testing.

o Sanitary Testing.

o Regression Testing.

o Re-Testing.

o Static Testing.

o Dynamic Testing.

o Alpha-Testing.

o Beta-Testing.

o Compatibility Testing.

o Installation Testing.

o Adhoc Testing.

 TCD (Test Case Documentation)

 STLC

o Test Planning.

o Test Development.

o Test Execution.

o Result Analysis.

o Bug-Tracing.

o Reporting.

 Microsoft Windows – Standards

 Manual Testing

 Automation Testing (Tools)

o Win Runner.

o Test Director

Testing:

 The process of executing a system with the intent of finding an error.

 Testing is defined as the process in which defects are identified, isolated,

subjected for rectification and ensured that product is defect free in order

to produce the quality product and hence customer satisfaction.

 Quality is defined as justification of the requirements

 Defect is nothing but deviation from the requirements

 Defect is nothing but bug.

 Testing --- The presence of bugs

 Testing can demonstrate the presence of bugs, but not their absence

 Debugging and Testing are not the same thing!

 Testing is a systematic attempt to break a program or the AUT

 Debugging is the art or method of uncovering why the script /program

did not execute properly.

Testing Methodologies:

 Black box Testing: is the testing process in which tester can perform

testing on an application without having any internal structural

knowledge of application.

Usually Test Engineers are involved in the black box testing.

 White box Testing: is the testing process in which tester can perform

testing on an application with having internal structural knowledge.

Usually The Developers are involved in white box testing.

 Gray Box Testing: is the process in which the combination of black

box and white box techniques are used.

STLC (SOFTWARE TESTING LIFE CYCLE)

Test Planning: 1.Test Plan is defined as a strategic document which

 describes the procedure how to perform various testing

on the total application in the most efficient way.

 2. Objective of testing,

3. Areas that need to be tested,

4. Areas that should not be tested,

5. Scheduling Resource Planning,

 7. Areas to be automated, various testing tools used

Test Development: 1. Test case Development (check list)

 2. Test Procedure preparation. (Description of the test

cases)

Test Execution: 1. Implementation of test cases. Observing the result.

Result Analysis: 1. Expected value: is nothing but expected behavior

Of application.

 2. Actual value: is nothing but actual behavior of the

 application

Bug Tracing: Collect all the failed cases, prepare documents.

Reporting: Prepare document (status of the application)

Types of Testing:

 Smoke Testing: is the process of initial testing in which tester looks for the

availability of all the functionality of the application in order to perform detailed

testing on them. (Main check is for available forms)

 Sanity Testing: is a type of testing that is conducted on an application

initially to check for the proper behavior of an application that is to check all

the functionality are available before the detailed testing is conducted by on

them.

 Regression Testing: is one of the best and important testing. Regression

testing is the process in which the functionality, which is already tested before,

is once again tested whenever some new change is added in order to check

whether the existing functionality remains same.

 Re-Testing: is the process in which testing is performed on some

functionality which is already tested before to make sure that the defects are

reproducible and to rule out the environments issues if at all any defects are

there.

 Static Testing: is the testing, which is performed on an application when it is

not been executed. ex: GUI, Document Testing

 Dynamic Testing: is the testing which is performed on an application when

it is being executed. ex: Functional testing.

 Alpha Testing: it is a type of user acceptance testing, which is conducted on

an application when it is just before released to the customer.

 Beta-Testing: it is a type of UAT that is conducted on an application when it

is released to the customer, when deployed in to the real time environment and

being accessed by the real time users.

 Compatibility testing: it is the testing process in which usually the products

are tested on the environments with different combinations of databases

(application servers, browsers…etc) In order to check how far the product is

compatible with all these environments platform combination.

 Installation Testing: it is the process of testing in which the tester try to

install or try to deploy the module into the corresponding environment by

following the guidelines produced in the deployment document and check

whether the installation is successful or not.

 Adhoc Testing: Adhoc Testing is the process of testing in which unlike the

formal testing where in test case document is used, with out that test case

document testing can be done of an application, to cover that testing of the

future which are not covered in that test case document. Also it is intended to

perform GUI testing which may involve the cosmotic issues.

TCD (Test Case Document):

Test Case Document Contains

 Test Scope (or) Test objective

 Test Scenario

 Test Procedure

 Test case

This is the sample test case document for the Acadamic details of student

project:

Test scope:

 Test coverage is provided for the screen “ Acadamic status entry” form of

a student module of university management system application

 Areas of the application to be tested

Test Scenario:

 When the office personals use this screen for the marks entry, calculate

the status details, saving the information on student’s basis and quit the

form.

Test Procedure:

 The procedure for testing this screen is planned in such a way that the

data entry, status calculation functionality, saving and quitting

operations are tested in terms of Gui testing, Positive testing, Negative

testing using the corresponding Gui test cases, Positive test cases,

Negative test cases respectively

Test Cases:

 Template for Test Case

T.C.No Description Exp Act Result

Guidelines for Test Cases:

1. GUI Test Cases:

 Total no of features that need to be check

 Look & Feel

 Look for Default values if at all any (date & Time, if at all any require)

 Look for spell check

Example for GUI Test cases:

T.C.

No Description Expected value

Actual

value Result

1

Check for all the features

in

 the screen

The screen must

contain

all the features

2

Check for the alignment

of

the objects as per the

validations

The alignment should

be

in proper way

2. Positive Test Cases:

 The positive flow of the functionality must be considered

 Valid inputs must be used for testing

 Must have the positive perception to verify whether the requirements are

justified.

Example for Positive Test cases:

T.C.

No

Description Expected value Actual

value

Result

1 Check for the date Time

 Auto Display

The date and time of the

system must be

displayed

2 Enter the valid Roll no into

the student roll no field

It should accept

3. Negative Test Cases:

 Must have negative perception.

 Invalid inputs must be used for test.

Example for Negative Test cases:

T.C.

No

Description Expected value Actual

value

Result

1 Try to modify the

information in date and

time

Modification should not

 be allow

2 Enter invalid data in to the

student details form, click

on

Save

It should not accept

invalid data, save

should not allow

GUI

OUTPUT RESULTS

How Mail casting Project Works?

 Welcome Page

Steps:
1. If you are a registered user kindly log in, if you aren’t please signup first.

2. Signup:

On successful registration:

3. Login:

Login through above page or welcome page.

 On filling Incorrect Detail:

On filling Correct Detail:

4. Authorized user can compose mail, can check received mail and can contact to us.

5. Composing mail:

After sending mail:

6. Inbox:

7. Logging out:

8. Contact us:

Coding

File Name: ComposeMailServlet.java

package com.javatpoint;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

public class ComposeMailServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 request.getRequestDispatcher("header.html").include(request, response);

 HttpSession session=request.getSession(false);

 if(session!=null){

 String sender=(String)session.getAttribute("email");

 String recipient=request.getParameter("to");

 String subject=request.getParameter("subject");

 String message=request.getParameter("message");

 int i=MailDao.save(sender, recipient, subject, message);

 if(i>0){

 out.print("message successfully sent!");

 }

 }else{

 response.sendRedirect("loginerror.html");

 }

 out.close();

 }

}

File Name: ConnectionProvider.java

package com.javatpoint;

import java.sql.*;

public class ConnectionProvider {

public static Connection getConnection(){

 Connection con=null;

 try{

 Class.forName("oracle.jdbc.driver.OracleDriver");

 con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe","
system","oracle");

 }catch(Exception e){e.printStackTrace();}

 return con;

}

}

File Name: DateFormatter.java

package com.javatpoint;

import java.text.SimpleDateFormat;

public class DateFormatter {

 public static java.sql.Date formatdate(String stringdate)throws
Exception{

 SimpleDateFormat formatter=new SimpleDateFormat("yyyy-MM-
dd");

 java.util.Date utildate=formatter.parse(stringdate);

 java.sql.Date sqldate=new
java.sql.Date(utildate.getTime());

 return sqldate;

 }

}

File Name: InboxServlet.java

 package com.javatpoint;

 import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class InboxServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 request.getRequestDispatcher("header.html").include(request, response);

 out.close();

 }

 protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

 doGet(request,response)

 }

}

File Name:LoginDao.java

package com.javatpoint;

import java.sql.*;

public class LoginDao {

 public static String validate(String email,String password){

 String name=null;

 try{

 Connection con=ConnectionProvider.getConnection();

 PreparedStatement ps=con.prepareStatement("select
firstname from sssitmail_users where email=? and password=?");

 ps.setString(1,email);

 ps.setString(2,password);

 ResultSet rs=ps.executeQuery();

 if(rs.next()){

 name=rs.getString(1);

 }

 }catch(Exception e){e.printStackTrace();}

 return name;

 }

}

File Name: LoginServlet.java

package com.javatpoint;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

public class LoginServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 String
email=request.getParameter("email").concat("@sssitmail.com");

 String password=request.getParameter("password");

 String name=LoginDao.validate(email, password);

 if(name!=null && !name.equals("")){

 HttpSession session=request.getSession();

 session.setAttribute("name",name);

 session.setAttribute("email",email);

 response.sendRedirect("InboxServlet");

 }else{

 request.getRequestDispatcher("loginerror.html").forward(request,
response);

 }

 out.close();

 }

}

File Name: MailDao.java

package com.javatpoint;

import java.sql.*;

public class MailDao {

 public static int save(String sender,String recipient,String
subject,String message){

 int status=0;

 try{

 Connection con=ConnectionProvider.getConnection();

 PreparedStatement ps=con.prepareStatement("insert into
sssitmail_message(sender,recipient,subject,message,messagedate,trash)
values(?,?,?,?,?,?)");

 ps.setString(1,sender);

 ps.setString(2,recipient);

 ps.setString(3,subject);

 ps.setString(4,message);

 java.util.Date
utildate=java.util.Calendar.getInstance().getTime();

 java.sql.Date sqldate=new
java.sql.Date(utildate.getTime());

 ps.setDate(5,sqldate);

 ps.setString(6,"no");

 status=ps.executeUpdate();

 }catch(Exception e){System.out.println(e);}

 return status;

 }

}

File Name: RegisterDao.java

 package com.javatpoint;

 import java.sql.*;

 public class RegisterDao {

 public static int save(String firstname,String lastname,String
email,String password,String gender,Date sqldob,String city,String
state,String country,Date sqlcurrentdate){

 int status=0;

 try{

 Connection con=ConnectionProvider.getConnection();

 PreparedStatement ps=con.prepareStatement("insert
into
sssitmail_users(firstname,lastname,email,gender,dob,city,state,country,regist
ereddate,password) values(?,?,?,?,?,?,?,?,?,?)");

 ps.setString(1,firstname);

 ps.setString(2,lastname);

 ps.setString(3,email);

 ps.setString(4,gender);

 ps.setDate(5,sqldob);

 ps.setString(6,city);

 ps.setString(7,state);

 ps.setString(8,country);

 ps.setDate(9,sqlcurrentdate);

 ps.setString(10,password);

 status=ps.executeUpdate();

 }catch(Exception e){System.out.println(e);}

 return status;

 }

}

File Name: RegisterServlet.java

 package com.javatpoint;

 import java.io.IOException;

import java.io.PrintWriter;

import java.util.Calendar;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class RegisterServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 out.print("<span style='color:red;font-size: 30px;font-
family: sans-serif;'>CompanyMailer<hr/>");

 String firstname=request.getParameter("firstname");

 String lastname=request.getParameter("lastname");

 String
email=request.getParameter("email").concat("@sssitmail.com");

 String password=request.getParameter("password");

 String gender=request.getParameter("gender");

 String dob=request.getParameter("dob");

 String city=request.getParameter("city");

 String state=request.getParameter("state");

 String country=request.getParameter("country");

 java.sql.Date sqldob=null;

 try{

 sqldob=DateFormatter.formatdate(dob);

 }catch(Exception e){out.print(e);}

 java.util.Date
currentdate=Calendar.getInstance().getTime();

 java.sql.Date sqlcurrentdate=new
java.sql.Date(currentdate.getTime());

 int i=RegisterDao.save(firstname, lastname, email,
password, gender, sqldob, city, state, country, sqlcurrentdate);

 if(i>0){

 out.print("you are successfully registered!
");

 request.getRequestDispatcher("loginform.html").include(request,
response);

 }

 else{

 out.print("registration failed!");

 }

 out.close();

 }

}

File Name:- LogOutServlet.java

package com.javatpoint;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class LogoutServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 out.print("<span style='color:red;font-size: 30px;font-family:
sans-serif;'>CompanyMailer<hr/>");

 request.getSession(false).invalidate();

 //out.print("<p>You are successfully logged out!</p>");

 //request.getRequestDispatcher("loginform.html").include(request,
response);

 response.sendRedirect("index.html");

 }

}

File Name:- LogOutServlet.java

package com.javatpoint;

import java.io.IOException;

import java.io.PrintWriter;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

public class SentMailServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 request.getRequestDispatcher("header.html").include(request,
response);

 HttpSession session=request.getSession(false);

 String name=(String)session.getAttribute("name");

 String email=(String)session.getAttribute("email");

 out.print("Hi,"+name+"");

 out.print("<h2>Inbox</h2>");

 try{

 Connection con=ConnectionProvider.getConnection();

 PreparedStatement ps=con.prepareStatement("select * from
sssitmail_message where sender=? and trash=? order by id desc");

 ps.setString(1,email);

 ps.setString(2,"no");

 ResultSet rs=ps.executeQuery();

 out.print("<table border='1' cellpadding='4'>");

 out.print("<tr><th>No.</th><th>Recipient:Subject</th><th>Message
Date</th></tr>");

 int count=1;

 while(rs.next()){

 out.print("<tr><td>"+(count++)+"</td><td>"+rs.getString("recipient")+":
"+rs.getString("subject")+"</td><td>"+rs.getDate("messagedate")+"</td></t
r>");

 }

 con.close();

 out.print("<table>");;

 }catch(Exception e){out.print(e);}

 out.close();

 }

}

Conclusion

CONCLUSION

The project titled as “Email System" has been designed with much care, with the intention easier and

the more complexity involved is presented in a simple and lucid style.

The advantages of the mailing System are

1. Security

2.Cost effective (may be Free of cost)

3.Less Mailing Time

4.Gift Incentives and many more...

The Intranet Mailing System works in a similar fashion as that of an Intranet Mailing System,

there is no need to get an internet connection for this mailing system. The various branches of the

organization can be connected to a single host server and then an employee of one branch can send a

message to an employee of another branch through server.

The users of Intranet Mailing are given a unique user-id and password is hided .So it gives

security also.

BIBLIOGRAPHY

BIBLIOGRAPHY

 For Java installation

 https://www.java.com/en/download/

 For Oracle DataBase installation

 http://www.oracle.com/index.html

 Reference websites

 www.javatpoint.com

 www.w3schools.com

 http://www.tutorialspoint.com/java/index.htm

 Reference Books

 Thinking in java

 OCJP Certified Programmer for Java

 Learn Java in Eassy Steps

 Complete reference Java

	Advantages:
	Existing System with Limitations:
	Proposed System Features:
	SPECIFICATION
	REQUIREMENT
	SPECIFICATION REQUIREMENT
	Software requirement Specification:
	Hardware Requirement Specification:
	Servlets:-
	Cookies
	The Servlet Cookie API
	The Session Tracking API

	Oracle® Database Express Edition
	1 Logging in as the Database Administrator
	2 Unlocking the Sample User Account
	3 Logging in as the Sample User Account
	4 Creating a Simple Application
	5 Running Your New Application
	6 Using the Oracle Database XE Menus
	Tomcat:-
	Architecture Overview
	Data Flow:
	4.1.1 DFD:

	Process Flow
	Activity Diagrams:

	SYSTEM DESIGN
	SYSTEM DESIGN (1)
	5.1 Sequence and collaboration diagrams
	Like all other diagrams, sequence diagrams may contain notes and constrains.

	TESTING AND IMPLEMENTATION
	TESTING AND IMPLEMENTATION (1)
	CONCLUSION

