

Programming

in

JAVA

Published by: Book Bazooka Publication
Website: BookBazooka.com
Email Address: info@bookbazooka.com

 BookBazookaOfficial
 BookBazooka
 BookBazooka
 BookBazooka
 BookBazooka
 BookBazooka

ISBN: 978-93-86895-76-9

Price: 450.00/- inr

Authors: Dr. V. B. Narsimha, Dr. Yogesh Kumar Sharma, Dr. S. Nagaprasad & Dr. Manju
Khari

© All Rights including Copyrights reserved with the Authors.
Publication Year: - 2019

All rights reserved. No part of this book may be reproduced or utilised in any form or by
any electronic, mechanical or means, now known or hereafter invented, including
photocopying and recording, or in any information storage and retrieval system without
permission in writing from the publisher or author.

mailto:info@bookbazooka.com

About Authors

Dr. V. B. Narsimha

Dr. V. B. Narsimha working as Assistant Professor in the Department of Computer
Science and Engineering at University College of Engineering, Osmania University,
Hyderabad Telangana. He completed his MCA from University College of
Engineering, Osmania University, Hyderabad, He got his M.Tech (Computer Science
and Engineering) degree from IETE, Hyderabad. His Ph.D completed from Osmania
University. His research areas are Data Mining, Networking, Image Processing,
Machine Learning, Software Engineering etc. In his research life he published
around 40 international journal papers in his research area. In his research career
he presented around 25 National and International conference papers, for his
research interest he around attended 20 National and International workshops. He
worked as a Lecturer in Department of Computer Science, Osmania University, Post
Graduate College, Gadwal and Nalgonda from 01.08.1994 to 22.08.2000 and
01.08.2002 to 14.03.2004 respectively. Presently under his guidance 15 scholars
are working in various areas at faculty of Informatics, Department of Computer
Science and Engineering, Osmania University, Hyderabad and one scholar awarded
Ph.D in the year 2019. Guiding 2 PhD scholars in Department of Computer Science
and Engineering, JNTU, Hyderabad. Guiding 2 PhD scholars in Department of
Computer Science and Engineering, K L University, Vijayawada, Andhra Pradesh.
Guided more than 150 students in their academic projects in Computer Science and
Engineering, University College of Engineering, Osmania University. Course Writer
for PGRRCDE, Osmania University and Institute of Public Enterprises. Worked as
System Analyst in Software Services and Resources Inc. Atlanta, Georgia (USA)
from 28.08.2000 to 18.04.2002. He worked as a principal Osmania University
P.G.College, Gadwal in the year 1997 to 2000.

Dr. Yogesh Kumar Sharma

Dr. Yogesh Kumar Sharma, Presently working as a Associate Professor (HOD /
Research Coordinator) Department of Computer Science Engineering and IT at
"Shri Jagdish prasad Jhabarmal Tibrewala University”, Chudela, Jhunjhunu
(Rajasthan). He completed his B.Sc with Computer Application in the year of 2002
awarded from S.M.L. (P.G.) College, Jhunjhunu, University of Rajasthan, M.C.A
from Modi Instituteof Management and Technology, Kota, University of Kota in the
year 2005, Ph.D. in Faculty of Computer Science, from "Shri Jagdish prasad
Jhabarmal Tibrewala University”, Jhunjhunu (Rajasthan) in the year 2014. His
research areas Data Communication & Networking, Operating System, Computer
Organization and Architecture, Datamining, Image processing, Cloud Computing,
Software Engineering etc. In his research life he Published 75 Papers in National
and International journals, 25 National andInternational conferences, 03
workshops. Under his guidance 05 research scholars awarded Ph.D. Presently 08
research scholars working under his guidance. He invited as a Guest Lecturer for
Students in M.Sc. I.T. (Master Program in Information Technology) on the behalf of
National University of Science and Technology, Muscat, Oman, Nov. 2019. He is
Paper Setter, Answer Sheet Evaluator (Copy Checker) and Practical Examiner in
University of Rajasthan, Jaipur, Pandit Deendayal Upadhyay University
(Shekhawati University), Sikar, Maharaja Ganga Singh University, Bikaner,
University of Kota, Kota, Board of Secondary Education Rajasthan, Ajmer. Ph.D. He
is Evaluator and Ph.D. Final Viva-Voce Examiner in OPJS University, NIMS
University, Mewar University. Published 2 patents on Title: Parallel Processing
System to Reduce Complexity in Data-Mining of Industrial & Social Big-Data. And
Title: Computer Implemented Method for Detecting Downlink Control Channel in
Long Term Evolution Wireless Communication. He has a member of IAENG, IACSIT,
CSTA and UACEE.

Dr. S. Nagaprasad

Dr. S. Nagaprasad working as a Faculty in Computer science and Applications,
Dept. of Computer Science and Applications, Tara Government College,
Sangareddy, Telangana state. He completed his B.C.A. in the year of 1998-2001
awarded from Osmania university, M.Sc (I.T.) in the year of 2001-2003 awarded
from Sikkim Manipal University, Sikkim, his research work completed from Ph.D in
Computer Science and Engineering, from Acharya Nagarjuna University, Sep-2015.
His research areas data mining, networking, image processing, machine learning
etc. In his research life he present completed 30 international journals in his
research area, 15 National and International conferences, for his research interest
he around attended 10 workshops. He worked as faculty in Computer Science at
S.K.N.R. Government Arts and Science College, Jagtial Telangana state for 10 years,
and he worked as faculty in Computer Science at S.R.R. Government Arts and
Science College, Karimnagar Telangana state for 05 years. Presently he is Guiding 5
Ph.D. scholars in Computer Science and Engineering “Shri. Jagdishprasad
Jhabarmal Tibrewala University”, Jhunjhunu (Rajasthan).

Dr. Manju Khari

Dr. Manju Khari an Assistant Professor in Ambedkar Institute of Advanced
Communication Technology and Research, Under Govt. Of NCT Delhi affiliated with
Guru Gobind Singh Indraprastha University, Delhi, India. She is also the Professor-
In-charge of the IT Services of the Institute and has experience of more than twelve
years in Network Planning & Management. She holds a Ph.D. in Computer Science &
Engineering from National Institute Of Technology Patna and She received her
master's degree in Information Security from Ambedkar Institute of Advanced
Communication Technology and Research, formally this institute is known as
Ambedkar Institute Of Technology affiliated with Guru Gobind Singh Indraprastha
University, Delhi, India. Her research interests are software testing, software
quality, software metrics, information security, optimization and nature-inspired
algorithm. She has 70 published papers in refereed National/International Journals
& Conferences (viz. IEEE, ACM, Springer, Inderscience, and Elsevier), 06 book
chapters in a springer. She is also co-author of two books published by NCERT of
Secondary and senior Secondary School.

Table of Contents

Unit-1
Aims and Objectives 1

1.1 Preface 1

1.2 Object oriented pattern 2

1.2.1 Basic view of OOP 2

1.2.2 Benefits of OOP 13

1.2.3 Applications of OOP 14

1.2.4 Java features 15

1.3 Overview of java language 18

1.3.1 Introduction 18

1.3.2 Simple Java program structure 19

1.3.3 Java tokens 21

1.3.4 Java Statements 24

1.3.5 Implementing a Java Program 25

1.3.6 Java Virtual Machine 27

1.3.7 Command line arguments 28

1.4 Identifier 29

1.5 Literals 30

1.5.1 Integer Literals 30

1.5.2 Character Literals 32

1.5.3 Boolean Literals 32

1.5.4 Floating Point Literals 33

1.5.5 String Literals 34

1.5.6 Null Literals 35

1.6 Constants, Variables & Datatypes 35

1.6.1 Introduction-Constants, Variables and Data Types 35

1.6.2 Declaration of Variables 43

1.6.3 Giving Value to Variables 44

1.6.4 Scope of variables 47

1.6.5 Symbolic Constants 51

1.6.6 Type casting 52

1.6.7 Getting Value of Variables 57

1.6.8 Standard Default values 58

1.7 Operators &Expressions 59

1.7.1 Operators 59

1.7.1.1 Assignment Operator(=) 59

1.7.1.2 Arithmetic Operators(+ , - , * , / , %) 60

1.7.1.3Unary Operators(+ , - , ++ ,- - , !) 64

1.7.1.4 Equality and Relational Operators(= = , ! = ,> , > = , < , < =), 67

1.7.1.5 Bit wise Operators(&(AND) 69

1.7.1.6 ^ (EXCLUSIVE OR) 70

1.7.1.7 | (INCLUSIVE OR)) 71

1.7.1.8Conditional Operator (&& (AND)) , | | (OR)) 72

1.8 Summary 72

1.9 Exercise 74

1.10 Objective Type Questions 75

Unit-II Conditional Statements and Loops

Aims and Objectives: 92

2.0 Conditional Control Statements 92

2.1. Selection Statements 92

2.1.1. Simple If 93

2.1.2 If-else 94

2.1.3 Nested if 96

2.1.4 Else if-ladder 98

2.1.5 Switch statement 101

2.1.6 Break Statement 103

2.1.7 Continue Statement 105

2.1.8 Labelled Statements 106

2.1.9 Labelled Break 106

2.1.10 Labelled Continue 108

2.2 While Statement 109

2.2.1 Do-While Statement 111

2.3 For loop 113

2.4 Enhanced for loop 115

2.5 Nested for loop 116

2.6 Summery 117

2.7 Exercise 118

2.8 Multiple Choice Questions 119

Unit-III Classes & Objects:

3.0 Aims and Objectives 129

3.1 Introduction 129

3.1.1 Defining and declaring a class 132

3.1.2 Adding variables 133

3.2 Creating an Object 134

3.2.1 Accessing class members 137

3.2.2 Constructors 140

3.3 Methods 145

3.3.1 Adding methods 146

3.3.2 Overloading methods 148

3.3.3 Overloading constructors 152

3.3.4 Access Control Specifiers 156

3.3.5 Nesting of methods 161

3.4 Concept of Static and Abstract (Simple application based examples) 163

3.5 Multithreaded Programming 169

3.5.1 Introduction 169

3.5.2 Creating Threads 170

3.5.3 Extending the Threads 170

3.5.4 Stopping and Blocking a Thread 174

3.5.5 Lifecycle of a Thread 174

3.5.6 Using Thread Methods 180

3.5.7 Thread Exceptions 181

3.5.8 Thread Priority 182

3.6 Synchronization 183

3.6.1 Implementing the ‘Runnable’ Interface 184

3.7 Arrays 186

3.7.1 Arrays 187

3.7.2 One-dimensional arrays 187

3.7.3 Creating an array 187

3.7.4 One-dimensional arrays 187

3.7.5 Two- dimensional arrays 189

3.8 Strings 190

3.9 Vectors 195

3.10 Wrapper classes 196

3.11 Summary 198

3.12 Exercise 199

3.13 Objective Type Questions 200

Unit-IV

4.0 Aims and Objectives 208

4.1 Introduction 208

4.2 Inheritance 208

4.2.1 Extending a class 209

4.2.2 Overloading methods 219

4.3 Final variables and methods 220

4.3.1 Final classes 222

4.4 Abstract methods and classes 222

4.4.1 Member access using super class 226

4.4.2 Member access using abstract classes 230

4.4.3 Call by value 230

4.4.4 Call by reference, 231

4.4.5 Overriding methods 231

4.5 Applets 234

4.5.1 Introduction 234

4.5.2 Types 234

4.5.2.1 local and remote applets 234

4.5.3 Applets and Applications 234

4.5.4 Building Applet code 234

4.6 Applet Life cycle 235

4.6.1 Initialization state 235

4.6.2 Running state 236

4.6.3 Idle or stopped state 236

4.6.4 Dead state 236

4.6.5 Display state 237

4.7 Summary 238

4.8 Exercise 239

4.9 Objective Type Questions 240

Unit-V

5.0 Aims and Objectives 248

5.1 Introduction 248

5.2 Packages 248

5.2.1 Introduction to Packages 248

5.2.2 Defining a package 249

5.2.3 Creation of Package 251

5.2.4 User defined package 252

5.2.5 Java API Packages 254

5.2.6 Using System Packages 255

5.2.7 Naming conventions 256

5.2.8 Accessing a Package 257

5.2.9 Using a Package 258

5.3 Interfaces 260

5.3.1 Introduction 260

5.3.2 Defining interfaces 260

5.3.3 Extending interfaces 261

5.3.4 Implementing interfaces 262

5.3.5 Assessing interface variables 264

5.3.6 Multiple inheritance 267

5.4 Managing Errors and Exceptions 269

5.4.1 Types of errors 269

a) Compile-time errors 269

b) Run-time errors 271

5.5 Exceptions 273

5.5.1 Exception handling 278

5.5.2 Multiple Catch Statements 287

5.5.3 Using finally statement 289

5.6 Managing input/output files in java 291

5.6.1 Introduction 291

5.6.2 Reading and writing files 291

5.7 Concept of Streams 292

5.7.1 Stream classes 293

5.7.2 Byte Stream Classes 293

5.7.3 Input Stream Classes 293

5.7.4 Output Stream Classes 294

5.8 Character Stream classes 294

5.8.1 Reader and Writer stream classes 295

5.8.2 Streams in Java 296

5.9 Summary 296

5.10 Exercise 298

5.11 Objective Type Questions 299

Unit-1

Aims and Objectives 1

1.1 Preface 1

1.2 Object oriented pattern 2

1.2.1 Basic view of OOP 2

1.2.2 Benefits of OOP 13

1.2.3 Applications of OOP 14

1.2.4 Java features 15

1.3 Overview of java language 18

1.3.1 Introduction 18

1.3.2 Simple Java program structure 19

1.3.3 Java tokens 21

1.3.4 Java Statements 24

1.3.5 Implementing a Java Program 25

1.3.6 Java Virtual Machine 27

1.3.7 Command line arguments 28

1.4 Identifier 29

1.5 Literals 30

1.5.1 Integer Literals 30

1.5.2 Character Literals 32

1.5.3 Boolean Literals 32

1.5.4 Floating Point Literals 33

1.5.5 String Literals 34

1.5.6 Null Literals 35

1.6 Constants, Variables & Datatypes 35

1.6.1 Introduction-Constants, Variables and Data Types 35

1.6.2 Declaration of Variables 43

1.6.3 Giving Value to Variables 44

1.6.4 Scope of variables 47

1.6.5 Symbolic Constants 51

1.6.6 Type casting 52

1.6.7 Getting Value of Variables 57

1.6.8 Standard Default values 58

1.7 Operators &Expressions 59

1.7.1 Operators 59

1.7.1.1 Assignment Operator(=) 59

1.7.1.2 Arithmetic Operators(+ , - , * , / , %) 60

1.7.1.3Unary Operators(+ , - , ++ ,- - , !) 64

1.7.1.4 Equality and Relational Operators(= = , ! = ,> , > = , < , < =), 67

1.7.1.5 Bit wise Operators(&(AND) 69

1.7.1.6 ^ (EXCLUSIVE OR) 70

1.7.1.7 | (INCLUSIVE OR)) 71

1.7.1.8Conditional Operator (&& (AND)) , | | (OR)) 72

1.8 Summary 72

1.9 Exercise 74

1.10 Objective Type Questions 75

Unit- I

Programming in JAVA Page | 1

AIMS AND OBJECTIVES:
Aim of the Unit:

 The aim of the unit is to cover fundamental concept of java programming

language in depth.

Objective:
 Java is a cross platform programming language commonly used in critical

applications such as banking systems. Objective of this unit is to provide basic

insight into the core features of java programming language. Such as OOP

concepts, Class, Object, Method, Inheritance, Encapsulation, Abstraction,

Polymorphism - Introduction to Java - History of Java – Features of Java –

Identifier, Literals, String Literals, Null Literals, Operators: Assignment Operators,

Arithmetic Operators, Unary Operators, Equality and Relational Operators, Bit

wise Operators, Conditional Operator, Variables, Keywords and Data Types. This

unit also intends to illustrate key concepts through easy to understand examples for

enhancing the understanding the reader.

1.1 Preface:

Object oriented programs were developed to eradicate problems which are

encountered in conventional programming languages. C++ is a procedural

language or it is an extension of object oriented programming language where as

java programming language is a pure object oriented language.

Object oriented programming language brings a form of extensible index by

building sufficient thought field for twain information as well as functions. Data

and Functions could be worn as instructions for building number of documents that

factors on appeal by user.

Unit- I

Programming in JAVA Page | 2

The memory partitions in object oriented program are independently the objects

and object can be worn in a variation of various indexes beyond any corrections.

Any programming problem is analysed by Object Oriented Programming in terms

of objects .Objects can contain information and code to operate the information the

perfect firm of information and code of an object could be built a user defined data

type named as class. A class is a combination of objects of identical form. Once a

class is derived then user may build whole number of objects associates to the

class.

1.2 OBJECT ORIENTED PATTERN:

1.2.1 BASIC VIEW OF OOP:

Class:

A class is declared with “Class” key word, within the class the information or

variables is also known as instance variables. The code is involved not outside

methods. Both the variables and methods within a class also called as members of

the class.

A class is defined as the format and behave of objects that will be mutual by a set

of objects. A class is a valid build up whereas an object is anatural truth. A class

may consist of elements called as members .Members of a class is attribute to as

member variables and member methods.

The code that serves on that information is also known as member methods and the

data elements used in class are known as member variables.

The main aim of class is to encapsulate complexity. Class members are defined as
two types.

Public
Private

Unit- I

Programming in JAVA Page | 3

Public:

Public data members are accessed by any external users which are not member of

that class.

Private:

Private data members are accessed by within the class methods only. No external

methods not accessed private data member.

Example of a Class:

Public class Book

{

String title;

int Price;

string author;

void no of pages ()

{

Object:

In Object Oriented Programming language issue dissolved into an index of body

also known as objects.

Objects are basic run time entities in an OOP. An object may be a person, a place,

a thing or a table of data that are handled by program. Once a class is defined user

may create any number of objects belonging to that class.

Unit- I

Programming in JAVA Page | 4

Example of Object:

class Course

{

int Course_Id;//field or data member or instance variable

String Course_Name;

public static void main(String args[])

{

Course a1=new Course();//creating an object of Course

System.out.println(a1.Course_Id);accessing member through reference variable Sy

stem.out.println(a1.Course_Name);

}

}

Method:

It is a lot of comments such endure combined stable to achieve a procedure is also

known as method. System.out.println () is a method, literally finish certain

comments in form to exhibit a information on the calm.

public static int min Function(int a1, int a2)

{

int min;

if (p1 < p2)

min = p1;

else

min = p2;

return min;

}

Unit- I

Programming in JAVA Page | 5

Inheritance:

In any programming language Reusability is the best feature. In OOPs (C++ and

Java) this could be achieved by Inheritance.

Inheritance is the growth by whatever single object inherits the assets of one more

object. Hierarchical classification backing the perception of Inheritance.

Inheritance provides a facility to users can derive a new class from extant class.

Both the classes will have mixed appearances of a new class. The derived class is

also called as sub class or child class or derived class, and the old class is also

known as base class or super class or parent class.

Java supports different forms of Inheritances.

 Single inheritance

 Multiple inheritance

 Hierarchical inheritance

 Multilevel inheritance

Encapsulation:

It is the structure that difficulty methods and information stable into a specific unit.

This hides the information from the surface world and manages the information

intact from surface interference and harm. It puts some restriction on outside code

from directly accessing data. Encapsulation is also known as "Data Hiding". The

information could be read by the index of the same class. Inside the wrapper the

code and data is accessed which is securely inhibited by a legible interface. In Java

programming language, the root of encapsulation is the class. A class illustrates the

arrangement and behaviour of information and Method that would be mutual by a

confirmed of objects. Several object of a present class involves the structure and

behaviour of data and methods which is defined by the class. The objects are

frequently assigned to as instances of a class. As follows, a class is a valid

Unit- I

Programming in JAVA Page | 6

construct; an object has natural entity. During you construct a class; you will

define the code and information that represent that class. Accordingly, the

particular details are also known as members of the class. Especially, the

information illustrate by the class are associated to as member variables or instance

variables. The code that completes on that information is associated to as member

methods or just methods. The members can be public or private. When a member

is made public any code outside the class can access them. If the members are

declared as private, then only the members of that class can access its members.

Java is a bottom down programming language. It was developed in late 1995 and

used by common people in early 1996. Java is an object oriented programming

language. At the time of development this java called as oak. Later it was named as

java till today so many versions are released.

Example of Encapsulation:

class Encapsulation Student

{

private int Stuhtno;

private String StuName;

private String StuFName;

private String StuCourse;

private String StuCaste;

private intStuAadharnumber;

private int StuAge;

private String StuAddress;

private intStuMobilenumber;

//Getter and Setter methods

Unit- I

Programming in JAVA Page | 7

public int getStuhtno()

{

return Stuhtno;

}

public String getStuName ()

{

return StuName;

}

public String getStuFName ()

{

return StuFName;

}

public String getStuCourse ()

{

return StuCourse;

}

public String getStuCaste ()

{

return StuCaste;

}

public int getAadharnumber()

{

return Aadharnumber;

}

public int getStuAge()

{

return StuAge;

Unit- I

Programming in JAVA Page | 8

}

public String getStuAddress ()

{

return StuAddress;

}

public int getMobilenumber()

{

return Mobilenumber;

}

public void setStuhtno(int newValue)

{

Stuhtno= newValue;

}

public void setStuName (String newValue)

{

StuName = newValue;

}

public void setStuFName (String newValue)

{

StuFName = newValue;

}

public void setStuCourse (String newValue)

{

StuCourse = newValue;

}

public void setStuCaste (String newValue)

{

Unit- I

Programming in JAVA Page | 9

StuCaste = newValue;

}

public void setStuAadharnumber (int newValue)

{

StuAadharnumber = newValue;

}

public void StuAge (int newValue)

{

StuAge = newValue;

}

public void setStuAddress (String newValue)

{

StuAddress = newValue;

}

public void StuMobilenumber (int newValue)

{

StuMobilenumber = newValue;

}

public class Encapsulation Student

{

public static void main(String args[])

{

Encapsulation Student obj = new Encapsulation Student ();

obj.setStuhtno("001");

obj.setStuName ("Sadguna");

obj.setStuFName ("Narsaiah");

obj.setStuCourse ("B.Sc");

Unit- I

Programming in JAVA Page | 10

obj.setStuCaste ("B.C.");

obj.setStuAadharnumber ("123456789101");

obj.setStuAge ("21");

obj.setStuAddress ("Nizamabad");

obj.setStuMobilenumber ("1234567890");

System.out.println("Stuhtno: " + obj.getStuhtno ());

System.out.println("StuName: " + obj.getStuName ());

System.out.println("StuFName: " + obj.getStuFName ());

System.out.println("StuCourse: " + obj.getStuCourse ());

System.out.println("StuCaste: " + obj.getStuCaste ());

System.out.println("StuAadharnumber: " + obj.getStuAadharnumber ());

System.out.println("StuAge: " + obj.getStuAge ());

System.out.println("StuAddress: " + obj.getStuAddress ());

System.out.println("StuMobilenumber: " + obj.getStuMobilenumber ());

}

}

Output:

Stuhtno: 001

StuName: Sadguna

StuFName: Narsaiah

StuCourse: B.Sc

StuCaste: B.C.

StuAadharnumber: 123456789101

StuAge: 21

StuAddress: Nizamabad

StuMobilenumber: 1234567890

Unit- I

Programming in JAVA Page | 11

Abstraction:

Abstraction of Data raises the influence of programming language by building user

defined data types. Abstraction of Data also performs the vital data in the schedule

beyond declaring the details. Abstraction indicates to the performance of defining

main features beyond with the back drop information or description among them.

Example of Data Abstraction:

class student

{

int htno;

float avg;

String name;

int total;

String course;

Void result ()

{

/* to know result only hall ticket number is required that means remaining

properties are hidden for result method */

}

Void avg()

{

/* to knowavg of a student marks hall ticket number and subject marks are required

remaining properties are hidden for avg method */

}

Unit- I

Programming in JAVA Page | 12

Polymorphism:

Polymorphism simply means many forms (from Greek, meaning “many forms”). It

can be defined as same thing being used in different forms. It has two forms:

compile-time polymorphism and run-time polymorphism. We know that binding is

the process of linking function call to the function definition. If the linking is done

at compile-time, then it is also known as compile-time binding. If it is done at the

run time it is also known as run-time binding. The compile-time binding is also

known as "static binding". The run-time binding is also known as "dynamic

binding".The compile-time binding is implemented using method overloading. The

run-time binding is implemented using method overriding.

Example of Polymorphism:

class course

{

void year()

{

System.out.println("first year");

}

}

class mpcs extends course

{

void year()

{

System.out.println("bsc mpcs first year ");

}

public static void main(String args[])

{

Unit- I

Programming in JAVA Page | 13

course a= new mpcs();

a.year();

}

}

1.2.2 BENEFITS OF OOPS:

Code Reusability and Recycling:

In java programming language OOPS can quickly be reuse in another program.

Encapsulation (part 1):

Previously an Object is build; ability of its performance is not needed for its use. In

earlier programs, cotes known the specifics of a sample of code previously

applying it. Furthermore, Objects get the capability to plant assured selection of

resolves from programming experts. That a voids programming experts from

manipulating with ethics them hold onto. Also, the object super vision where with

one collaborates along it, countering another verities of errors. For example, a

programming expert can it fixed the compass of a window to -400.

Design Benefits:

Complex lists are correct ambitious to compose yet Object Oriented Programming

languages effort producers to go over a considerable outlining point, which form

for superior layout with minor fault. In accession, already a program influence a

assured range, Object Oriented Programming Languages are literally easier to

program than non-Object oriented ones.

Unit- I

Programming in JAVA Page | 14

Software Maintenance:

Programs are no more useable .Object oriented Programming language allow you

to break your software into a bit-size legacy code like C need be trade for on a

periodic support, this one to be developed simultaneous (for a current report of an

endure example of software) or built to effort with strange computers and software.

An Object Oriented Programming language is enough clear to correct and continue

thaw a no-Object Oriented Programming Language. So despite a field of task is

finished ahead the program is recorded, minor task is desired to continue it bygone

time.

1.2.3 APPLICATION OF OOPS:

Object Oriented Programming Languages get turn into particular of the most

programming languages present. Available come out to be an enormous accord of

motivation and activity with software builders in building Object Oriented

Programming Language.

Functions of Object Oriented Programming systems have many consequences in

various fields. The ultimate suitable function of object-oriented programming

language is, in the field of programmer confluence forms similar as window.

Building the Object Oriented Programming techniques hundreds of windowing

systems have been developed. Actual-field in the system is generally further

compound and consists of several objects with intricate aspects and method. Object

Oriented Programming Language is helpful in the particular types of functions

over it could clarify a complicate dissue. The impending operations of function of

Object Oriented Programming Language comprise:

Unit- I

Programming in JAVA Page | 15

 Real-time system

 Simulation and modelling

 Object-oriented data bases

 Hypertext, Hypermedia

 AI and expert systems

 Neural networks and parallel programming

 Decision support and office automation systems

 CIM/CAM/CAD systems

1.2.4 FEATURES OF OOPS:
Features of Java:

Java programming language has liable various appearances. This also called as

java programming buzzwords. The Java programming languages appearances

liable under are plain and smooth to deduce.

 Simple

 Secure

 Portable

 Object-oriented

 Robust

 Multithreaded

 Architecture-neutral

 Interpreted o High performance

 Distributed

 Dynamic

Unit- I

Programming in JAVA Page | 16

Simple:

Allowing to Sun Micro Systems, Java programming language is plain through:

syntax is placed on Object Oriented Programming Language in C++ (so accessible

for programming experts to determine it later Object Oriented Programming

Language in C++). Java Programming Language was produced to be clear for the

competent programmer to determine and need completely. Excised several

confounding and/or early-worn appearances example explicit pointers, operator

overloading etc. No use to discard preferences objects through available is

Automatic Garbage Collection in java.

Secure:

Once the byte code generated, the code can be transmitted to other computer

without knowing the essential details of the source code.

Portable:

The byte code can be easily carried from one machine to other machine.

Object Oriented:

Everything in Java programming language is an Object. In Java programming

language the object perfect is plain and simple to expand, during primitive types,

like in the process integers, livestored as tremendous-achievement non-objects.

Robust:

The dual-plat-formed conditions about the network situations particular appealsat a

program, as long as the program necessary shows certainly in a variation about

systems. Thus, in the model about Java programming language the aptitude

through build powerful programs stay liable a huge preference. Java programming

Unit- I

Programming in JAVA Page | 17

language also free from having worry about many errors. Java is Robust in terms

of memory management and mishandled exceptions. Java provides automatic

memory management and also provides well defined exception handling

mechanism.

Multithreaded:

Creating interactive, networked programs Java programming language hold

describes through proper the actual-universe condition. Through perform such,

Java language backing multithreaded programming, which ever concede the

programmer through compose programs such actvaried effects together..

Architecture-Neutral:

Java programming language devisers formed different compo site choice usual the

Java programming language including the Java Virtual Machine usual on header

through modify such positions. Their objective continues “compose earlier;

compile wherever, at any movement, evermore.” Through an extreme duration,

such objective continues spracticed.

Interpreted and High Performance:

Java programming languages permits the making about short-platform programs

over organises with in any standard illustration known Java unit code. Such code

could be accomplished about several systems such contraption the JVM (Java

Virtual Machine). Maximum erstwhile exertion by short-platform solving keep

fixed such towards the liability about execution. As interpreted previous, the Java

unit code continue fully performed such that it insist be simple to convert exactly

within natural mechanism code since actualelevated completion over applying a

just-in-time compiler.

Unit- I

Programming in JAVA Page | 18

Distributed:

Java programming language endures described since the assigned situation about

the network over it holds Transaction Control Protocol/Internet Protocols. In case,

work into a creation applying a Uniform Resource Locator holds no more enough

various against work into a list. Java programming language includings takes

Remote Method Invocation (RMI). Such component implements a program to

request approaches over an internet.

Dynamic:

In java programming language instructions bring upon the system valuable

measures about execution-time nature data such continue worn through check up

and objective approach through objects through execution time. Such arrange it

desirable through inimical attachment code in a protected and advisable

appearance.

1.3 OVERVIEW OF JAVA LANGUAGE:

1.3.1 INTRODUCTION

Java incorporates all the fundamentals features of preceded popular languages c,

c++ features, addition to those features it provide so many features to the users.

Now a day’s World Wide Web programs mostly with java only. Apart from www

today’s smart phones using operating system android also developed by using java

only.

Java not only a simple programming language it also an execution platform, it is

called as java virtual machine (JVM). JVM provides comfortable easy platform for

java programs jvm facilitate user to develop programs compilation of programs

Unit- I

Programming in JAVA Page | 19

and running programs on different types of platforms difficulty it is called as

platform independent (Robust) programming language.

From the first version release java included thousands of classes which facilitate

user to develop programs conveniently to meet present requirements. After java

many programming languages developed but still java used by many people.

1.3.2 PROGRAM STRUCTURE OF SIMPLE JAVA:
Nowpractice the exemplarabout HelloWorld Java program through explains

framework and appearanceabout the class. Suchinstruction is drafted about rare

lines and minepart assignment hold to print “Hello World from Java” on the

monitor.

1. “Package sct”:

Statement endures package expression. The package description specifies a name

space modern whichever classes continue reserved. The package endures worn

through construct the group of objects situated above performance. Whenever the

user eliminates the package description, the class names endure bring within the

imperfection package, whicheverkeep no name. Wherever in the instruction

package description can’t develop. It needendure the initial line about your

program or the user couldignore it.

Unit- I

Programming in JAVA Page | 20

2. “public class HelloWorld”:

Such line keeps several appearances about java programming language.

a. public:

It is approach conditioner keyword whichever explains accumulator approach

through class. Values about approach conditioners could be public, protected, and

private or default (no value).

b. class: It is worn through in form a class. Class of the Name (HelloWorld) ensue

over such it.

3. Comments section:

The user could compose mention through java programming language in multiple

approaches.

a. Line comments:

Line Comments begins including multiple precocious slashes [//] and maintains

through the deadline about the present line. It doesn’t desire a closing pattern.

b. Block Comments:

It begins including a precocious slash and an asterisk (/*) and extent including an

asterisk and a forward slash (*/). It may again continue over as several lines as

desired.

4. “public static void main (String [] args)”:

It is approach (Function) specifiedspecialincluding string array on the periodof an

finisher.

a. public: It is an Access conditioner.

Unit- I

Programming in JAVA Page | 21

b. static: It is a reserved keyword which ever me assures such a approach continue

exposed and useful same yet no objects about the class occur.

c. void: It insists nothing nesscould be revolved against the approach. This

approach could revolve several primaries either object.

d. Approach consist internal flower brakes. { }

5. System.out.println ("Hello World from Java"):

a. System: System endures the label about Java function class.

b. Out: Outendure an object which ever associate to System class.

c. println: Println is efficiency approach name whichever endure worn through

forward several String through the calm.

d. “Hello World from Java”: This is a String simple agreed on the point of dispute

through println approach.

1.3.3 JAVA TOKENS:
The smallest individual unit is known as token. The Java program finder purposes

it where as compound explanations and comments. Java program endure a

selection about various descriptions about tokens, comments, and white spaces.

When we write a program, we need different important things. We require

language tokens, white spaces, and formats.

There are five types of tokens in java:

Reserved Keywords:

Keywords are words that have already been defined for Java compiler. They have

special meaning for the compiler. Java programming Keywords need endure

modern the user data through the user can’t worn them on the period of a variable,

class or an approach name.

Unit- I

Programming in JAVA Page | 22

List of Java Reserved Keyword:

The user can not worn keyword on the point of modifierusual the user Java

programs, particular reserved words in Java programming language library and

worn through execute an enclosed procedure.

Identifiers:

These are the names about variables, methods, classes, packages and interfaces.

Various literals they continue not either the objects resolves, reliable approaches

about attributing through the system. For example, in the above HelloWorld

program, HelloWorld, String, args, main and println are identifiers.

Unit- I

Programming in JAVA Page | 23

Literals:

Each consistent assessment whichever could be authorised through the variable is

known as literal/constant.

For example: int x = 100;

Here 100 are a constant/ literal.

Operators:

In java programming language Operator is a symbol this is worn through

executeactions. For example: +, -, *, / etc.

In java programming language operators are different types they are:

 Unary Operator

 Arithmetic Operator

 Shift Operator

 Relational Operator

 Bitwise Operator

 Logical Operator

 Ternary Operator and

 Assignment Operator

Separators:

Separators help us to explain the buildabout a program. It is wornnow HelloWorld

endure parentheses, (), flower braces, { }, the season, ., also the semicolon, ;. The

consoleindexes the different Java programming separators (nine aboutthe user can

whole clearing and finishing separators as dual).

()
Include arguments through approach explanations and playing;

conformspreferencethrough arithmetic expressions; enclavecastingform and

Unit- I

Programming in JAVA Page | 24

determine assessment explanations through continuation control description.

{} describes sections about code including positively loads arrays

[] insists array types include references array ethics.

; confineexplanations

,
Splitensuingattributethrough variable communication; chains

explanationsthrough the test, executionabouta for loop.

.
Chosen a range or approachagainst an object; undo package names against sub-

package and class names

: Wornrear loop labels

White space is also considered as a token.

1.3.4 JAVA STATEMENTS:

 In the English language Statements are similar to sentences . Itmodean entire view

whichever could receive single or multiple specifications. Moreover, descriptions

through Java programming structure an integrated command into endure finished

and could build single or multiple interpretation.

In snap conclusion, a Java programming presentation stays good a preparation such

illustrate what would appear.

Java Statement Types:

In java programming three particular collections such enclose the other variety of

presentations through Java programming:

Expression statements:

Variation ethics such variables, call approaches, and build objects.

Unit- I

Programming in JAVA Page | 25

Declaration statements:

confirm variables.

Control flow statements:

Complete the form such expressions are completed. Commonly, there are implied

against highest to lowest. Yet, including direction wind expressions, such form

could be suspended through device branching or looping such that the Java

program could compile individual branches about code placed on

satisfiedexpressions.

1.3.5 A JAVA PROGRAM IMPLEMENTATION:

Performance about a Java program requires a sequence of mark. It build:

Building the program

Program Compilation

Executing the program

Java Statement Example:

//declaration statement

int n;

//expression statement

n = 2;

//control flow statement

If (n <5)

{

//expression statement

system.out.pritnln (n + “is less than 5”);

}

Unit- I

Programming in JAVA Page | 26

Building the program:

The user could build a program applying all text editors. Conclude such the user

keep recorded the ensuing program.

The programmer necessary store ssuch program in a file it is

known Student.java providingsuch the file name consist of the class name

perfectly. Such file is known as the source file. Naturalsuchvarious Java source

files wouldinclude the expansion java.

Program Compilation:

In compilation part, the programmer necessary compile the Java Compiler javac,

including the name about the source file above the command line as below:

C:\ Users\ javac Javaapp.java

Executing the program:

In the execution part, the programmernecessarycompile the Java interpreter,

including the name about the class file above the command line as below:

C:\ Users\ java Javaapp

class Student

{

public static void main(String[] args)

{

System.out.println("hey student");

}

}

Unit- I

Programming in JAVA Page | 27

1.3.6 JAVA VIRTUAL MACHINE:

Java that allows the key through determines twain the refugemoreover the

flexibility issues endure the byte code. The execution about Java Compiler endures

no directly runnable. Relatively, it contains highly optimized group of instructions.

This group of instructions is called, "byte code". This byte code is describedinto

endure executed over Java Virtual Machine (JVM). The Java Virtual Machine also

called as the Interpreter for byte code. The issuescombinedincludingnetwork-

placed programs obtain solved by Java Virtual Machine.The Java Virtual Machine

easily translating a Java program into byte code and into compile a program into a

vast variation about conditions (or platforms) beingisolated the Java Virtual

Machine essential into endurere solved where as individual staging. Previously the

compile-time package survives being a liable system, each Java program could

execute about it. Recognize, platform to platform the particulars about the Java

Virtual Machine wouldturn; all understand the same Java Byte Code. So, the result

about byte code over the Java Virtual Machine endures the simple approach

through build exactly convenient programs.
over

The actuality such a Java program endures completed over the Java Virtual

Machine again supports through prepares it protected. Over the Java Virtual

Machine endures intorule, it could consist of the program and inhibit it against

develop marginal things surface about the system.

Normally, while a program endures compose into a moderate model and again

explained over a virtual machine, it compileseasy than it command compile about

compose to excusable code. Though, including Java, the exponential enclosed by

the double about no suchideal. Whereas byte code has been so reform, the apply

about byte code approve the Java Virtual Machine throughresult programs enough

quick than the use refficiency assume.

Unit- I

Programming in JAVA Page | 28

To give on-the-fly performance, the Sun began to design Hotspot Technology for

Compiler, which is known as, Just-In-Time compiler. The Just-In-Time, Compiler

also produces output immediately after compilation.

1.3.7 COMMAND LINE ARGUMENTS:

Through the season about compiling the java programmes the command line

arguments is passed. Internal a java program access the command-line argument is

quite easy, these arguments are passed from console, java program received

commands and it can be used as an input. These endures saved on the point of

string in String array passed through the args parameter of main() approach.

Class command

{

Public static void main (String[] args)

{

For (int k=1; k<args.length; k++) {

System.out.println (args[k]);

}

}

}

Finishsuch program on the point of java command 40 50 60

Output:

40

50

60

Unit- I

Programming in JAVA Page | 29

1.4 IDENTIFIER:

This is worn whereasname of the class, name of the method and name of the

variable. It can doeach detailed arrangement of capital and small characters,

numbers, either the underscore and dollar-sign letters. These need not start

including a number; to prevent them endures thrown including an exponent literal.

Over, Java programming language endures case-sensitive, such expense endures a

special identifier these Value.

Java identifierExample:

Public class Identifier

{

Public static void main (String[] args)

{

Int P=10;

}

}

In the above java code, we have 5 identifiers namely:

Identifier: Is the class name.

main: Is the method name.

String: it is the predefined class name.

args: it is a variable name.

P: it is a variable name.

Unit- I

Programming in JAVA Page | 30

1.5 LITERALS

Each and every consistent value whichever could be authorized through the

variable endures also known as literal or constant.

Example of Literal:

// present 1 is a literal or constant

Int a=1;

1.5.1 INTEGER LITERALS:

Integral literals:

There are four types of Integral literals. these are (byte, short, int, long)

Decimal literals (Base 10):

Through such Decimal literals model the granted intergers from 0-9.

Ex:

int a=123;

Octal literals (Base 8):

Through such Octal Literals model the granted intergers from 0-7.

Ex:int a= 0146;

Hexa-decimal literals (Base 16):

Throughsuch Hexa-Decimal Literals model the granted digits from 0-9 and

alphabets from a-f. The usercouldapplythe pair Capital and small alphabets.

Actually java is a case – sensitive programming language althoughpresent java is

not a case –sensitive programming Language.

Ex: - int a=0X123;

Unit- I

Programming in JAVA Page | 31

Binary literals:

Against 1.7 beyond the user could determine literals assessment direct now binary

plan including, concede number spersist 0 and 1. Literals assessment would be

appendalong 0b or 0B.

Ex: - int a=0b1111;

Public class Binary

{

Public static void main (String[] args)

{

int p = 123; // decimal-form literal

int q = 0123; // octal-form literal

int r = 0xbabe; // Hexa-decimal form literal

int s = 0b1111; // Binary literal

System.out.println (p);

System.out.println (q);

System.out.println(r);

System.out.println (s);

}

}

Output:

123

83

47806

15

Unit- I

Programming in JAVA Page | 32

1.5.2 CHARACTER LITERALS:

In character literals data types we can define in tofourtypes:

Single quote:

The usercould define literal to character data type in the point of individual

character in a period individual name.

Example of Single Quote:

Character ch = “x”

Integral literal as Char literal:

The programmer could define integral literal as character literal that performs

encoded assessment about the integral literals and character literals such could be

described this one in Decimal, Octal and Hexadecimal structures. However the

granted length is 0 to 65535.

Example of Character Literals:

Char ch = 111;

1.5.3BOOLEAN LITERALS:

For Boolean literals any two values are permitted those are true and false.

Boolean a = true;

public class Boolean

{

public static void main(String[] args)

{

Unit- I

Programming in JAVA Page | 33

boolean a = true;

boolean b = false;

boolean c = 0;

boolean d = 1;

System.out.println(a);

System.out.println(b);

System.out.println(c);

System.out.println(d);

}

}

1.5.4 FLOATING POINT LITERALS:

Such data types, the user couldmention literals intosingledecagonalpattern and the

user could notmention into octal and Hexa-decimal patterns.

Public static void main (String[] args)

{

double d1 = 123.4; // represents d1 as double value

double d2 = 1.234e2; // same value as d1, but in scientific notation

double d3 = 123400E-3; // same value as d1, but using negative exponential

float f1 = 123.4f; // represents f1 as float value

float f2 = 12.34E+01f; // same value as f1, but in scientific notation

}

Unit- I

Programming in JAVA Page | 34

1.5.5 STRING LITERALS:

In String Literalthose characters in sequence in double quotes is called as String

literals.

Example of a String Literal:

String s = "Nayan";

In String Literal meant consist of unasked newlinealphabets. On the other hand, the

Java finder would estimate finder time statements, such the specified String

statementoutputsthrough a string including three lines of text:

Example of a String Literal Program:

String text = "This is a String literal\n"

+ "which spans not one and not two\n"

+ "but three lines of text.\n";

public class new

{

public static void main(String[] args)

{

String a = "prasad";

// Aboutthe userimputeexternally "" again it pleasureon the point of a variable

// and originruntime error

String a1 = manju;

System.out.println(a);

System.out.println(a1);

}

}

Unit- I

Programming in JAVA Page | 35

1.5.6 NULL LITERALS:

Null:

It endures aunique Java literal whicheverexhibit a null value: anexpense whichever

doesn’t assigninto several objects? Nullendures any error into headerinto reverence

the null value — Java wouldsend a NullPointerException.

Null endures much worn into substitute uninitiated state.

1.6CONSTANTS, VARIABLES & DATATYPES:

1.6.1 INTRODUCTION-CONSTANTS, VARIABLES AND DATA

TYPES:

A constant is a variable which cannot have its value changed after declaration. It

uses the 'final' keyword.

Syntax:

modifier final dataType variableName = value; //global constant

modifier staticfinal dataType variableName = value; //constant within a classNotes

It is convention to capitalize the variable name of a constant.

Declaring a field as 'final' ensures that it is constant and cannot change.

The modifier specifies the scope of the constant.

Constants are very popular with classes. Because the value of a constant doesn't

change between created objects, it is usually declared static. The static keyword

changes the way the value is accessed: the value of the constant isn't accessed

using the object, but with the class name itself.

Unit- I

Programming in JAVA Page | 36

Example:

Variable:

A variable is used to hold a value which may be modified during execution of the

program. Scopes of a variable differ from one class to another class. Basically

variables defined in a class are useful with in the class only.

DataType:

Each and every variable hold single data type values, it is specified at the time of

variable declaration. Likeon the point of int x, float y, char z etc.,

In the above example int represent the variable x, holds integer values.

It endures a main keyword worn into share acceptable recognition location as long

as the information. In familiarwhole programming language endures consisting

three sections about data types. These are

 Fundamental or primitive data types

 Derived data types

 User defined data types.

public final double PI = 3.14; //global constant, outside of a class

//constants within a class

public class Human

{

public static final int NUMBER_OF_EARS = 2;

}

//accessing a class constant

int ears = Human.NUMBER_OF_EARS;

Unit- I

Programming in JAVA Page | 37

Primitive data type:

Java is fully typed language. The security and strength of the Java language is in

appearancefurnish by its tough type. Such data types hold these chosea variable

grantsthe userinto savesimilarsingle value yet thesenot at allconcedethe userinto

savedual values aboutsimilarform.

Example:

int r; r = 1; // valid

r = 1, 2, 3; // not valid

These obtain the primary data types these obtain inherent into Java language.

It holds an inherent structure situation over it could be analysis such this cordial

about information hold saved central the variable, and that expressions it backing.

Java implements an easy firm about different data types then further languages

same C and C++.

The Primitive data types are:

Char, byte, short, int, long, float, double, Boolean. The above mentioned are again

divided into 4 groups.

Unit- I

Programming in JAVA Page | 38

Integer Group:

Integer group describesByte, Short, Int, Long. These data types will use different

sizes of the memory. These are allowed positive and negative values. The

following table showing the width and ranges of these values:

Type Contains Default Size Range

Byte Signed Integer 0 8 Bits -128 to +127

Short Signed Integer 0 16 Bits -32768 to +32767

Int Signed Integer 0 32 Bits -2147483648 to +2147483647

Long Signed Integer 0 64 Bits -9223372036854775808 to

9223372036854775807

Unit- I

Programming in JAVA Page | 39

Byte:

Byte holds the least integer category. Byte holds a registered integercategory; byte

disregard expense holds 0. The range about the byte 8-bit type and the byte range

start against –128 to 127. A variable about category byte endures specifically

suitable while the programmer functioning along a flow about information against

a system or data. This endures again proper while the programming functioning

among basic binary information such cannot be precisely consistent including

Java’s another inherent forms. These variables endure announced over usage about

this keyword.

Short:

Short is a signed integertype; its default value is 0. The size of the Short 16-bit type

and the Short range starts from –32768 to +32767. It is possibly the minimum-

worn Java type. Example of short Integer:

Short p, q;

Int:

Int is the ultimate widely worn integer form. It endures a signed integer form;

intrinsic fault expense endures 0, the content about the int 32-bit and the Int range

starts against – 2,147,483,648 to 2,147,483,647. In inclusion into alternative needs,

variables aboutform int hold frequently occupied into rule loops and into basis

arrays. In int we can store the values about byte and short.

Example int a=5;

Long:

It is also a signed integer. Its default value 0, the size of the Long is 64-bit type and

the Long Range start from -9223372036854775808 to 9223372036854775807. It

Unit- I

Programming in JAVA Page | 40

is effective for that possibility situation on int form enduresno more wide

acceptable into influence the choose form. The field about a continued endure

sentirely extensive. Such cause it effective while huge, exclusive integer shold

desired.

Example:

Long x=123456;

Boolean Type:

It performs a fact form. Existent endures exclusive double available integrity about

such forms, describing the double Boolean element: on or off, yes or no, true or

false. Boolean represents two values. It could not at all obtain changed into against

another data types.

Type contains Default Size Range

Boolean True or False False 1 Bit NA

Floating-Point Group:

It is known as real numbers, continue worn while calculate explanations such

desire divided exactness. These are worn with operations such as square root,

cosine, and sine etc. In floating point two types about Floating-Point numbers:

float and double. The float type represents individual exactness and double

represents double precision. Their area and dimensions obtain as follows:

Float:

The form float defines a simple-exact ness assessment such usage 32 bits about

repository. Simple exactness endures quickly above any processor and catches

partlyon the point of enough field on the point of dual exactness. Variables about

Unit- I

Programming in JAVA Page | 41

form float hold effective while the programmer essential a dividedinherent,

although donot desire a extensiveintensity about exactness.

Example:

float height, price;

Double:

Dual exactness, on the point of proved over the dual keyword, needs 64 bits into

save an equivalent. Dual exactness endures really quickly than simple exactness

about a few latest processors such include continue increased being large-rapidity

numerical estimations. Complete the numerical operations, thison the point of

sin(), cos(), and sqrt(), restoration dual integrities.

Example:

double area,pi;

Example program to calculate the area of a circle

import java.io.*; class Circle

{

public static void main(String args[])

{

double r,area,pi;

r=12.3;

pi=3.14;

area=pi*r*r;

System.out.println("The Area of the Circle is:"+area);

}

}

Unit- I

Programming in JAVA Page | 42

Characters Group:

In Java programming language, characterthe data type worninto savecharacters.

Yet, C language programmers or C++ language programmers notice: character in

Java programming language enduresno more the similaron the point of character in

C language or C++ language. In C languageor C++ language, characterendures 8

bits distended. Such endures no more the compact in Java programming language.

Preferably, Java programming languages apply unified to perform appearances.

Unified describes a entirely universal appearances firm such could reproduce entire

about the appearances establish in entire personal expressions.

Java characteris a 16-bit type. The area about a character endures 0 to 65,536.

Existent hold no refusing characters. The usual certain about characters called as

American Standard Code for Information Interchange (ASCII) fixed dimensions

against 0 to 127 as always, and the enlarged 8-bit character fixed, ISO-Latin-1,

dimensions against 0 to 255.

Example program of Character data type:

 class Char_Demo

{

public static void main(String args[])

{

character ch01, ch02;

ch01 = 99; // code for A

ch02 = 'B';

System.out.print("ch01 and ch02: ");

System.out.println(ch01 + " " + ch02);

}

}

Unit- I

Programming in JAVA Page | 43

1.6.2 DECLARATION OF VARIABLES:

Rules to declare a Variable:

Variable names are case-sensitive.

Whole variable name shall foundation including this one characters either

underscore (_) either dollar ($) figure.

The dollar sign character, over assembly, endures not ever worn through entire.

The users can asset part of directions wherever auto-induced names would consist

of the dollar sign, yet the user variable names shall ever escape applying it

An identical assembly remains being the underscore character; during its

mechanically proper to introduce the user variable name by "_", such method

endures dispirited.

No gap persists concede in the variable communication.

Excluding underscore (_) notexclusive symbol persist concede in the medium

about variable communication.

Name of the variable need no moreobtain a keyword either restrained word.

Backing about Basic Character about extra Word:

Wherever variable name consist of dual words next compose basic character about

next word into primary Case. Wherever variable name consist of basic word next

compose such word in short case.

Java Variable Assignment:

In java programming language appointing a value to a variable given below:

Name of the Variable = value;

Example Assigning a value to the variable:

Byte x = 120;

Float y=101.22;

String s = "this is Daksh";

Unit- I

Programming in JAVA Page | 44

1.6.3 GIVING VALUE TO VARIABLES:

In Java we can input the value of a variable in 3 different ways as following:

Constant values assigned during writing the program code.

Assigning values as command line argument, before implementation about the

program.

Assigning values at compile time.

Assigning value as constant

This is the first and the most basic method of initializing values to the variables in

any programming language; in this method we basically assign values while

writing the program code itself. It is very widely used for basic programs to make

students easily understand the working of a program or it can be also be used for a

variable whose value changes rarely, such as interest rates.

Example program Multiplication of Two Numbers in Java Program.

class Multiplication

{

public static void main(String [] args)

{

int p, q, r;

p = 30;

q = 50;

r = p + q;

System.out.println("Multiplication of p and q = "+r);

}

}

Unit- I

Programming in JAVA Page | 45

Assigning value as command line argument: In this method we assign the values to

variable before the execution of the program, using command line argument while

running the program in command prompt.

Compilation of program like this:

D:\Users\ javac add.java

D:\Users\ java add

//A Simple Program to Add Two Numbers in Java Program using command

line argument.

class add

{

public static void main(String [] arg)

{

int a,b,c;

a=Integer.parseInt(arg[0]);

b=Integer.parseInt(arg[1]);

c=a+b;

System.out.println(c);

Unit- I

Programming in JAVA Page | 46

Assigning value at runtime:

This is approach is the most common method worn to appoint values to variable

through run time about the program, it asks for input from the users where

required. In this method “BufferedReader” class is used to view information

against the buffer memory whichevercontinue the part of ‘io’ sub package.

You can simply run this program using the java classname command on command

prompt, then it will ask for two numbers one by one and will show you the sum.

//A Simple Program to Add Two Numbers in Java Program using run time

argument.

import java.io.*;

class add

{

public static void main(String [] args)throws IOException

{

InputStreamReader isr = new InputStreamReader(System.in);

BufferedReader br = new BufferedReader(isr);

int x,y,z;

System.out.println("Enter 1st no.");

x=Integer.parseInt(br.readLine());

System.out.println("Enter 2nd no.");

y=Integer.parseInt(br.readLine());

z=x+y;

System.out.println("Sum is="+z);

 }

}

Unit- I

Programming in JAVA Page | 47

1.6.4 SCOPE OF VARIABLES:

It lies within the class. In generally variables declared in one class are doesn’t have

life in other classes. System automatically de – allocates memory for the variable

after its life completes.

Different types of Variable in Java:

Java supports differentcategoriesabout variables such as:

 Local Variable

 Instance Variable

 Static Variable

Local Variable:

These persists declared in methods, constructors, either blocks.

These persists building whereas the method, constructor either section endures

indexed and the variable would be expendearlier it opening the method,

constructor either block.

Entry conditioner can’t be wornwhereas local variables.

These endure observing uniquein a period the declared approach, including in the

assessable either the section.

These variables endure complete through cluster levelled convertly.

For local variables there is no default value. Such local variables allowstated and a

basic value allow assigned before the first use.

Local variable’s scope:

Class

{

Constructor

{

Unit- I

Programming in JAVA Page | 48

// worn Local Variables innerassembler

}

Method

{

// worn Local Variables inner Method block

{

// worn Local Variables inner Block

}

}

}

Example of Local Variable:

class Local Variable

{

public void checkLocal ()

{

int z=0;

z=z+5;

System.out.println ("z="+z);

}

public static void main(String args[])

{

Local Variable test = new Local Variable ();

test.checkLocal ();

}

}

Unit- I

Programming in JAVA Page | 49

In the given example, zlives a local variable. Such endures described internal

checkLocal () approach and particular extension endures defined into only that

approach

Output: 5

Instance Variable:

This variable isannounced now a class, yet farther a approach, assembler either

each section. For this variable a fieldact announced whereas an object through the

aggregation a space where as every exponent variable expense through build. This

variable is generating while an object obtain generates including the need about the

keyword “new” also broken while the object move broken. This variable tenure the

integrity such could be attributing over larger than single approach, manufacturer

either section. This variable can be announced in body of a class since or later use.

For this variable route altering could be liable where asprecedent variables. This

variable is clear where astotal approaches, manufacturers and sections into the

class. Commonly it endures mentioned to causethe particular variables

confidential. Though where as this variable clarity where as description could be

liable where as these variables including the usage about entry conditioner. This

variable has privation integrity. Whereas integers the privation integrity hold 0,

whereas Booleans it holdfake and where as object associating it hold invalid.

Integrity could be authorised over the report eitherin a period the assembler

exponent variables could be work into straight over calling the variable name

internal the class. Thoughin period fixed approaches and other classes (although

exponent variables endures liable convenience) these shall be known applying the

entirely efficient name.

Unit- I

Programming in JAVA Page | 50

Static Variable (Class Variable):

These are announced including the constant keyword into a class, although

completed an approach, assembler either a section. Existent determine exclusive

stay single type about individual class variable through class, slack about where by

several objects endures build against it. This variable is saved into fixed reflection.

It endures exclusive into usage fixed variables alternative than declared ultimate

and wornon the point of public either private specifications. This variable is build

when the class enclosing static variables is full and lost while the instructionsclose.

For this variable clarity endures same into exponent variables. Though, maximum

of this variable is announced public since they must be available for users of the

other classes. This variable could be achieved over working including the class

name. For these variable fault integrities endures likewise on the point of exponent

variables. Whereas integers the fault integrity about 0, Whereas Booleans it about

invalid and whereas object implication it about invalid. To this variable integrities

could be arranged pending the expression eitherin a period the assembler. Also

integrities could be arranged into exclusive fixed initialize sections.

Example program on Variables:

class emp

{

int empid;

//instance variable String name;

//instance variable

static String empcompany = "infosis";

//static variable emp (int a, String b)

{

empid = a;

Unit- I

Programming in JAVA Page | 51

empname = b;

}

void display()

{

System.out.println(empid + " " + empname + " " + empcompany);

}

}

class empmain

{

public static void main(String args[])

{

empe1 = new emp (001, "varshini");

// e1 and e2 are local

empe2 = new emp (002, "nayan");

e1.display();

e2.display();

}

}

1.6.5 SYMBOLIC CONSTANTS:

Concluding variables distribute on the point of symbolic constants. A concluding

variable announcement stands efficient including the composed

word concluding. The variable stands firm into a integrity into the announcement

and can’t moverectified. Whatever similar pursuit endures captured through

compose time.

Unit- I

Programming in JAVA Page | 52

1.6.6 TYPE CASTING:

Whereas the user allows integrity about single data type into one more data type,

the multiple descriptions efficiency no more about suitable where as exclusive

further. Whenever the data types obtain consistent, again Java programming

language would execute the modification accordingly called as automatic form

passing and wherever not either again they use into stand cased either reformed

expressly.

Example, selecting any integer expense into a high variable. Extend either

mechanical form passing.

Extend passing holding field wherever multiple data types enduring accordingly

passing. Such appear whereas:

The dual data types enduresuitable. Where as the user allows expense about a

minor data type into a major data type.

public class Lecturer

{

public static final int Lecturer_id = 1001;

private String Lecture_Name;

private int[] ;

public Lecturer (String Lecturer_name)

{

this. Lecturer_name = Lecturer_name;

this.Lecture_id = new int[Lecturer_id];

}

}

Unit- I

Programming in JAVA Page | 53

whereas Example, into java programming the fraction data types where as

consistent including exclusive another though not mechanical transformation

endures promoted against exponent form into character either boolean. Again,

character moreover boolean remain no suitable whereas exclusive alternative.

Output:

Int value 10

Long value 10

Float value 10.0

Example:

class type casting

{

public static void main(String[] args)

{

int a = 10;

// automatedformreformation

long l1 = a;

//automatedformreformation

float f1 = 1l;

System.out.println("Int value "+a);

System.out.println("Long value "+l1);

System.out.println("Float value "+f1);

}

}

Unit- I

Programming in JAVA Page | 54

Narrowing or Explicit Conversion:

Wherever the user need into select a integrity about largest data type into a minor

data type the user execute precise form casting eitherrestricting. Such holds

suitable where as conflicting data type’s situation automated modification can’t be

executed. Present, object-form determine the choose form into disciple the detailed

integrity to.

Character and numeral endures not suitable including exclusive further. Leads

observe where as the user fling into disciple single toward another.

Error: inconsistent forms: probable lossy modification against integer to
characterchar = number;
 ^
1 error
Where with to create Explicit Conversion?

//Example program of Java to explaininconsistent information

// formwhereasexactformmodification

publicclassTest

{

publicstaticvoidmain(String[] argv)

{

charch = 'c';

intnum = 99;

char = number;

}

}

Unit- I

Programming in JAVA Page | 55

Example:

Output:

Double value 50.03

Long value 50

Int value 50

In the time selecting integrity to byte form the fractional part endures invisible

more over it shortened to modulo 256(range of byte).

//Example program of Java to explainexactformmodification

classTest

{

publicstaticvoidmain(String[] args)

{

doubled = 50.03;

//exactformmodifying

longl = (long)double;

//exactformmodifying

inti = (int)longl;

System.out.println("Doubled value "+double);

//fractional part lost

System.out.println("Long value "+longl);

//fractional part lost

System.out.println("Int value "+inti);

}

}

Unit- I

Programming in JAVA Page | 56

Example:

Output:

Conversion of int to byte.

i = 257 b = 1

Conversion of double to byte.

d = 323.142 b = 67

//Java program to illustrate Conversion of int and double to byte

classTest

{

publicstaticvoidmain(String args[])

{

byteb;

inti = 257;

doubled = 323.142;

System.out.println("Conversion of int to byte.");

//i%256

b = (byte) i;

System.out.println("i = "+ i + " b = "+ b);

System.out.println("\nConversion of double to byte.");

//d%256

b = (byte) d;

System.out.println("d = "+ d + " b= "+ b);

}

}

Unit- I

Programming in JAVA Page | 57

1.6.7 GETTING VALUE OF VARIABLES:

import java.lang.reflect.Field;

public class Main

{

public static void main(String[] args) throws Exception

{

Object clazz = new TestClass();

String lookingForValue = "firstValue";

Field field = clazz.getClass().getField(lookingForValue);

Class clazzType = field.getType();

if (clazzType.toString().equals("double"))

System.out.println(field.getDouble(clazz));

else if (clazzType.toString().equals("int"))

System.out.println(field.getInt(clazz));

//System.out.println(field.get(clazz));

}

}

class TestClass

{

public double firstValue = 3.14;

}

Unit- I

Programming in JAVA Page | 58

1.6.8 STANDARD DEFAULT VALUES:

Data Type Default Value (for fields)

Byte 0

Short 0

Int 0

Long 0L

Float 0.0f

Double 0.0d

Char ‘u0000’

String (or any object) null

Boolean false

Unit- I

Programming in JAVA Page | 59

1.7 OPERATORS & EXPRESSIONS

1.7.1 OPERATORS

An operator is a character that represents an action. Java maintains a

easyfirmaboutit to operate variables.

1.7.1.1 ASSIGNMENT OPERATOR (=):

Java furnishes special operators such could be worn to associate in arithmetic

operation whereas an it. On the point ofthe user possibly see, announcement

related the successive endures entirely familiar in programming:

Operator Symbol Meaning of that Operator

= Simple assignment operator operand

+= Addition AND assignment operator

-= Subtraction AND assignment operator

*= Multiplication AND assignment operator

/= Division AND assignment operator

%= Modulo AND assignment operator

Explain program to perform all the Assignment operations:

Public class assignment operator

{

Public static void main(string args[])

{

Int p=30;

Int q=40;

Int r=0;

r=p+q;

Unit- I

Programming in JAVA Page | 60

System.out.println(“r=p+q=”+r);

r += p;

System.out.println(“r= +=p” +r);

r -= p;

System.out.println(“r= -=p” +r);

r *= p;

System.out.println(“r= *=p” +r);

p=20;

q=19;

r /= p;

System.out.println("z /= p = " + z);

p=20;

q=21;

r %=p;

System.out.println("r %= p = " + r);

}

}

1.7.1.2 ARITHMETIC OPERATORS(+, - , *,/,%):

In Operators Arithmetic operators act as adding (+), subtracting (-), multiplying

(*), and dividing (/) the Values, and taking the percentage of the values (%). This

operator could be related with each numerical form: byte, short, int, long, float, or

double. Usually Java further furnish unary plus (+) and unary minus (-) to cause a

numerical form positive either negative. Numerical forms hold over fault positive,

about the holds no more get by each sign. In the given table consist of Arthematic

Operators

Unit- I

Programming in JAVA Page | 61

Operator Symbol Meaning of that Operator

+

This symbol meaning is

addition

-

This symbol meaning is

subtraction

*

This symbol meaning is

Multiplication

/

This symbol meaning is

division

%

This symbol meaning is

modulus

Example program to perform all the arithmetic addition operations:

Addition.java import java.io.*;

Class addition

{

public static void main(String args[])

{

int x,y,z,;

x=20;

y=27;

// addition

z=x+y;

System.out.println("The Sum is:"+z);

}

}

Unit- I

Programming in JAVA Page | 62

Example program to perform all the arithmetic Subtraction operations:

Subtraction.java import java.io.*;

class subtraction

{

public static void main(String args[])

{

int x,y,z,;

x=20;

y=10;

// subtraction

z=x-y;

System.out.println("The Subtraction is:"+z);

}

}

Example program to perform all the arithmetic Multiplication operations:

//arithmetic multiplication

multiplication.java import java.io.*;

class multiplication

{

public static void main(String args[])

{

int x,y,z,;

x=10;

y=10;

// multiplication

Unit- I

Programming in JAVA Page | 63

z=x*y;

System.out.println("The multiplication is:"+z);

}

}

Example program to perform all the arithmetic Division operations:

//arithmetic Division

Division.java import java.io.*;

class division

{

public static void main(String args[])

{

int x,y,z,;

x=10;

y=10;

// division

z=x/y;

System.out.println("The division is:"+z);

}

}

Example program to perform all the arithmetic modulo operations:

//arithmetic modulo

modulo.java import java.io.*;

class modulo

Unit- I

Programming in JAVA Page | 64

{

public static void main(String args[])

{

int x,y,z,;

x=10;

y=15;

// modulo

z=x%y;

System.out.println("The modulo is:"+z);

}

}

1.7.1.3UNARY OPERATORS(+ , - , ++ ,- - , !):

In java we have increment (++) and decrement (--) operators.

Operator Symbol Meaning of that Operator

++

This symbol meaning is

increment operand by

one

--

This symbol meaning is

decrement operand by

one

Unit- I

Programming in JAVA Page | 65

Increment Operator:

Such operator the Operand value increased by one. With this we have two

methods. One is Postfix and second prefix.

Operators as Postfix and Prefix:

Suppose the userworn ++ operator on the point of prefix related: ++test. The form

about test act incremented by 1 again, appeal restoration the form.

Suppose the userworn ++ operator on the point of postfix related: test++. The

authentic form about test holds restoration early then, test act incremented by 1.

Example of increment operator:

Class increment

{

public static void main(Strings args[])

{

int p=1;

int q=1;

p++;

q++;

system.out.println(“p=”+p);

system.out.println(“q=”+q);

}

}

Decrement Operator:

This operator is worninto formabout a variable by 1. That holds mark by the

symbol “--”. Such could be worn in dual things:

Unit- I

Programming in JAVA Page | 66

Operators as Postfix and Prefix:

Suppose the userworn-- operator on the point of prefix related: --test. The form

about test act decremented by 1again, appeal restoration the form.

Suppose the userworn-- operator on the point of postfix related: test--. The

authentic form about test holds restoration early then, test act decremented by 1.

Example of Decrement operator:

Class decrement

{

public static void main(Strings args[])

{

int p=1;

int q=1;

p--;

q--;

system.out.println(“p=”-p);

system.out.println(“q=”-q);

}

}

Example of increment and decrement operator:

class IncreDecre

{

public static void main(String args[])

{

int p = 1;

int q = 2;

int r;

int s;

Unit- I

Programming in JAVA Page | 67

r = ++q;//pre increment the value

s = p--; //post decrement the value

r++; //post increment the value

s--; //post decrement the value

System.out.println("p = " + p);

System.out.println("q= " + q);

System.out.println("r = " + r);

System.out.println("s = " + s);

}

}

1.7.1.4 EQUALITY AND RELATIONAL OPERATORS(= = , ! = ,> , >

= , < , < =):

This operators complete the communication such single operatorkeepinto another.

Exactly, the entire identity and obtaining. The following are the relational

operators.

Operator Symbol Meaning of that Operator

== Equal to

!= Not Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The conclusion about the action endures a Boolean value (True or False) form.

This operators endures largest exasperate worn in the connection such control the

act authority description including the various forms loop authorities.

Unit- I

Programming in JAVA Page | 68

In java programming language with integers, floating-point numbers, characters,

and Booleans could be correlated applying the equal opportunity test, ==, and the

inequality test, !=. Notice that in Java equality is denoted with two equal signs, not

one.

Example of Relational Operators:

public class relational operator

{

public static void main(String args[])

{

int p = 5;

int q = 7;

System.out.println("p == q = " + (p == q));

System.out.println("p != q = " + (p != q));

System.out.println("p > q = " + (p> q));

System.out.println("p < q = " + (p< q));

System.out.println("q >= p = " + (q>= p));

System.out.println("q <= p = " + (q<= p));

}

}

Output of the Programme:
p==q =false
p!=q = true
p>q = false
p<q = true
q>=p = true
q<= p = false

Unit- I

Programming in JAVA Page | 69

1.7.1.5 BIT WISE OPERATORS(&(AND):

Java specifies different bitwise operators such could be utilized to the integer

types, long, int, short, char, and byte. Such operators beginning with particular bits

of their operands. The following are the Bit Wise Operators:

Operator Symbol Meaning of that Operator

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise Exclusive OR assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

These operators are divided into threelevels: Logical operators, Shift operators, and

Relational operator:

Bitwise Logical Operator:

&, |, ^, and ~ these symbols are the bitwise logical operators. The following table

contains the result of every operation. The bitwise operators are tested to each

unique bit within each operand.

Unit- I

Programming in JAVA Page | 70

P Q P&Q P|Q P^Q P~Q

0 0 0 0 0 1

1 0 0 1 1 0

0 1 0 1 1 1

1 1 1 1 0 0

The Bitwise AND:

The Bitwise AND operator denoted by (&) symbol, it produces 1 as a result if both

operands are 1. If any 1 operand is 0 then it produces result as 0 only. Example of

Bitwise AND the decimal number 65 has the following binary pattern:

01000001=65

&00010001=17

00000001

1.7.1.6 ^ (EXCLUSIVE OR):

The Bitwise XOR operator denoted by (^) symbol, it gives result as one exactly

one operand is 1; otherwise it gives result as 0 in other words if two operands may

have either zeros or both ones then the result is 0.

01000001=65

^00010001=17

 01010000

Unit- I

Programming in JAVA Page | 71

1.7.1.7 | (INCLUSIVE OR)):
The Bitwise OR operator denoted by (|) symbol, it combines the bits and gives

result as 1 if any one operand is 1. It gives result as 0 if both the operands are 0.

01000001=65

|00010001=17

01010001

Example program of Bitwise Logical Operators:

class janya

{

public static void main(String args[])

{

int p = 8; // 00000100 in binary

int q = 10; // 00001010 in binary

int r = p | q;

int s = p&q;

int t = p ^ q;

int u = (~p&q) | (p& ~q);

int v = ~p& 0x0f;

System.out.println(" p|q = " +r);

System.out.println(" p&q = " +s);

System.out.println(" p^q = " +t);

System.out.println("~p&q|p&~q = " + u);

System.out.println(" ~p = " + v);

}

}

Unit- I

Programming in JAVA Page | 72

1.7.1.8. CONDITIONAL OPERATOR (&& (AND)) , | | (OR)):

Here another name of the Conditional operator is known as ternary operator. These

conditional operators consist about03 operands and areworn to calculate Boolean

announcements that are True or False value. The main object of the conditional

operator is to conclude which value should be selected to the variable. The

conditional operator is written as: variable a = (expression)? Value if true: value if

false example: b = (a == 1)? 10: 20;

Example program of conditional Operator:

ConditionalOperators Daksh.java

public class ConditionalOperatorsDaksh

{

public static void main(String args[])

{

int p=20;

int q= 40;

int a1 = (p<q) ? p : q;

int a2 = (p>q) ? p : q;

System.out.println("a1 : "+a1);

System.out.println("a2 : "+a2);

}

}

Unit- I

Programming in JAVA Page | 73

1.8 SUMMARY:
The main feature of java is its platform independence; java creates an intermediate

byte code, which can then be executed on any platform. The computer needs Java

Virtual Machine to execute this byte code. The JVM is platform specific.The main

features of any object oriented programming language are abstraction,

encapsulation and polymorphism. Java provides abstraction using the abstract

keyword with classes and encapsulation by classes and objects. There are two

types of polymorphism in java: runtime Polymorphism and compile time

polymorphism. Java provides primitive data types like bool, int, short, char, float,

long, double as well as user-defined data types using union, structures and classes.

Int, short, double are used for integer literals and float, double for floating point

literals.There are some reserved words known as tokens in java, which you cannot

use for naming your identifier.The variables whose value you don’t want to get

changed in the program are defined as constants. There is automatic typecasting in

java as well as explicit. There are many operators, which can be used to solve

problems. These are Assignment Operators, Arithmetic Operators, Unary

Operators, Equality and Relational Operators, Bit wise Operators and Conditional

Operator.

Unit- I

Programming in JAVA Page | 74

1.9 EXERCISE:
 Write a Java program to print a face.

 Write a Java program to convert a decimal number to binary number.

 Write a Java program to reverse a string.

 Write a Java program to create and display unique three-digit number using

1, 2, 3,

 Write a Java program to convert temperature from Fahrenheit to Celsius

degree.

 Write a Java program that reads a number and display the square, cube, and

fourth power.

 Write a Java program to break an integer into a sequence of individual

digits.

 Write a Java program that accepts two integer values from the user and

return the larger values. However if the two values are the same, return 0

and return the smaller value if the two values have the same remainder when

divided by 6.

Unit- I

Programming in JAVA Page | 75

1.10 OBJECTIVE TYPE QUESTIONS

1. Which is the assigned range forthe ‘short’ data type in Java?
a) -32768 to 32767
b) -33456to 33455
c) -3246391318 to 3246391317
d) None
Ans: A

2. Which is the assigned range for the‘byte’ data type in Java?
a) -111 to 110
b) -128 to 127
c) -2147483648 to 2147483647
d) None
Ans: B

3. What are the following are valid statements of Java code?
1. int a = (int)777.7;
2. byte b = (byte)200B;
3. long c = (byte)200C;
4. byte d = (byte)200D;
a) 1 and 2
b) 2 and 3
c) 3 and 4
d) All statements are correct.
Ans: D

4. A expression concernint, literal numbers and byte automatically converted to
what are the data types?
a) Byte
b) Chat
c) Float
d) int
Ans: D

Unit- I

Programming in JAVA Page | 76

5. What are the literals could be storedwithin an float data type variable?
a) -3.4e+038
b) -03.4e+037
c) -2.7e+408
d) -2.4e+070
Ans: A

6. Which data type valuedo all transcendental math functions return as a part of
their execution?
a) double
b) single
c) char
d) None
Ans: A

7. Which is the assigned numerical range for a‘char’ data type variable in Java?
a) -32444 to 32443
b) 0 to 2
c) 0 to 65535
d) None
Ans: C

8. Which formof encoding is used for data type characters in Java?
a) UNICODE
b) Boolean
c) Byte
d) None
Ans: A

9. How many values can be stored within a boolean variable?
a) True
b) True & False
c) False
d) None
Ans: B

Unit- I

Programming in JAVA Page | 77

10. Which of these occupy the first 0 to 127 values in the Unicode character set
utilised for characters in Java?
a) ASCII and ISO-LATIN1
b) Char
c) Float
d) None of the mentioned
Ans: A

11. Which of these statements is a valid declaration of a boolean variable?
a) boolean b1 = 1;
b) boolean b3 = false;
c) boolean b2 = false;
d) boolean b4 = ‘true’
Ans: B

12. Which order does the ‘Enum’ construct use by default for storing variables?
a) Down order
b) Ascending order
c) Random order
d) None
Ans: B

13. We can create an instance of Enum outside of the Enumconstruct itself.
Evaluate the validity of the above statement.
a) True
b) False
Ans: B

14. In a scenario whereEnum constants are added to a TreeSet, what sorting order
will be used by default?
a) Sorted in the order of declaration of Enums
b) Sorted in alphabetical order of Enums
c) Sorted based on order() method
d) Sorted in descending order of names of Enums
Ans: A

Unit- I

Programming in JAVA Page | 78

15. Which method returns the elements of Enum class?
a) getEnums()
b) getEnumConstants()
c) getEnumList()
d) getEnum()
Ans: B

16. Which class do all the Enums extend by default?
a) Object
b) Enums
c) Enum
d) EnumClass
Ans: C

17. Enum constructs are type-safe. Evaluate the validity of the statement.
a) False
b) True
c) True & False
d) None
Ans: B

18. Which of the following represents an advantage of BigDecimal over Double?
a) Syntax
b) Memory usage
c) Garbage creation
d) Precision
Ans: D

19. Overloaded methods for +,-,* and / are not supported by which of the following
data types?
a) int
b) float
c) double
d) BigDecimal
Ans: D

Unit- I

Programming in JAVA Page | 79

20. What is the base for theBigDecimal data type?
a) Base 10
b) Base 6
c) Base 8
d) None
Ans: A

21. What is the major limitation of ‘toString()’ method of BigDecimal?
a) There is no limitation
b) toString returns null
c) toString returns the number in expanded form
d) toString uses scientific notation
Ans: D

22. What are following is not possible with BigDecimal?
a) scale manipulation
b)hashing
c) + operator
d) None
Ans: C

23. BigDecimal is contained within which package?
a) java.lang
b) java.math
c) java.util
d) java.io
Ans: B

24. What does‘BigDecimal.ONE’ represent ?
a) wrong statement
b) custom defined statement
c) static variable with value 1 on scale 10
d) static variable with value 1 on scale 0
Ans: D

Unit- I

Programming in JAVA Page | 80

25. Which class represents a library of functions for performing arithmetic
operations of BigInteger and BigDecimal?
a) MathContext
b) MathLib
c) BigLib
d) BigContext
Ans: A

26. Which of these is a literal of the data type ‘Long’?
a) 0x99fffL
b) ABCDEFG
c) 0x99fffa
d) 99671246
Ans: A

27. What are the data types can be returned as a value by the operator &?
a) Integer
b) Boolean
c) Character
d) Integer or Boolean
Ans: D

28. Literals in java are compulsorily appended by which of these?
a) L
b) l
c) D
d) L and I
Ans: D

29. Literal can be associated with which of these data types?
a) integer
b) float
c) Boolean
d) all
Ans: D

Unit- I

Programming in JAVA Page | 81

30. What are forbidden for use for naming a variable in Java?
a) Identifier
b) keyword
c) identifier & keyword
d) None
Ans: B

31. Which of these is aprimary condition for automatic type conversion in Java?
a) The destination type is smaller than source type
b) The destination type is larger than source type
c) The destination type can be larger or smaller than source type
d) None of the mentioned
Ans: B

32. Which of these prototype of the default constructor for the class declared by the
below mentioned statement?
public class prototype { }
a) prototype()
b) prototype(void)
c) public prototype(void)
d) public prototype()
Ans: D

33. What is the error in these code statements?
byte b = 50; b = b * 50;
a) b can not contain value 100, limited by its range.
b) * operator has converted b * 50 into int, which can not be converted to byte
without casting.
c) bcan not contain value 50.
d) No error in this code
Ans: B

Unit- I

Programming in JAVA Page | 82

34. If an expression contains double, float,int and long, then whole expression will
promoted into which of these data types?
a) long
b) int
c) double
d) float
Ans: C

35. Which of these meant by Truncation in Java?
a)Integer value assigned to Char type
b) Integer value assigned to floating type
c) Floating-point value assigned to an Double type
d) Floating-point value assigned to an integer type
Ans: D

36. Which of the following can be used as operands for arithmetic operators?
a) Float
b) byte
c) Numeric & Characters
d) None
Ans: C

37. Modulus operator, %, is applicable to which of these data types?
a) Byte
b) Integers and floating – point numbers.
c) Boolean
d) None
Ans: B

38. −− Operator decreases the value of its operand?
a) 2
b) 3
c) 1
d) None
Ans: C

Unit- I

Programming in JAVA Page | 83

39. How many statements are invalid?
a) Assignment operators are more efficiently implemented by Java run-time system
than their equivalent long forms.
b) Assignment operators run faster than their equivalent long forms.
c) Assignment operators can be used only with numeric and character data type.
d) None
Ans: D

40. Is it possible for 8 byte long data type to be automatically type cast to 4 byte
float data type?
a) True
b) False
Ans: A

41. Which of these does not represent a bitwise operator?
a) &
b) &=
c) |=
d) <=
Ans: D

42. Which operator is utilised for inverting all the digits in binary representation of
a number?
a) ~
b) <<<
c) >>>
d) ^
Ans: A

43. On applying Left shift operator, <<, on an integer data value, bits are lost in the
situation of shifting past which position bit?
a) 1
b) 32
c) 33
d) 31
Ans: D

Unit- I

Programming in JAVA Page | 84

44. Which right shift operator preserves the sign of the value of its operand?
a) <<
b) >>
c) <<=
d) >>=
Ans: B

45. Which of these statements is invalid?
a) The left shift operator, <<, shifts all of the bits in a value to the left specified
number of times
b) The right shift operator, >>, shifts all of the bits in a value to the right specified
number of times
c) The left shift operator can be used as an alternative to multiplying by 2
d) The right shift operator automatically fills the higher order bits with 0
Ans: D

46. What is the output value for relational operators?
a) Integer
b) Boolean
c) Characters
d) Double
Ans: B

47. Which of these data type values is returned by “greater than”, “less than” and
“equal to” operators?
a) Integers
b) Floating – point numbers
c) Boolean
d) None of the mentioned
Ans: C

48. Which of these operators has the ability for skipping the evaluation of the
operand on its right direction?
a) !
b) |
c) &
d) &&
Ans: D

Unit- I

Programming in JAVA Page | 85

49. Which of these statement is valid?
a) true and false are numeric values 1 and 0
b) true and false are numeric values 0 and 1
c) true is any non zero value and false is 0
d) true and false are non numeric values
Ans: D

50. Which of these operators holds the highest precedence?
a) ()
b) ++
c) *
d) >>
Ans: A

51. Which of these statements is invalid?
a) Equal to operator has least precedence
b) Brackets () have highest precedence
c) Division operator, /, has higher precedence than multiplication operator
d) Addition operator, +, and subtraction operator have equal precedence
Ans: C

52. Which of the following is not an OOPS concept in Java?
a) Inheritance
b) Encapsulation
c) Polymorphism
d) Compilation
Ans: D

53. Which of the following represents a type of polymorphism in Java?
a) Compile time polymorphism
b) Execution time polymorphism
c) Multiple polymorphism
d) Multilevel polymorphism
Ans: A

Unit- I

Programming in JAVA Page | 86

54. When does method overloading get determined?
a) At run time
b) At compile time
c) At coding time
d) At execution time
Ans: B

55. When does Overloading not occur within a program?
a) More than one method with same name but different method signature and
different number or type of parameters
b) More than one method with same name, same signature but different number of
signature
c) More than one method with same name, same signature, same number of
parameters but different type
d) More than one method with same name, same number of parameters and type
but different signature
Ans: D

56. Which concept of Java is a way of mapping real world objects
intorepresentation in terms of class?
a) Polymorphism
b) Encapsulation
c) Abstraction
d) Inheritance
Ans: C

57. Which concept of Java is achieved by combining methods and attributes into a
unified class structure?
a) Encapsulation
b) Inheritance
c) Polymorphism
d) Abstration
Ans: A

Unit- I

Programming in JAVA Page | 87

58. What concept in Java is demonstrated in the scenario where an object has its
own lifecycle and there is no owner?
a) Aggregation
b) Composition
c) Encapsulation
d) Association
Ans: D

59. What concept in Java is demonstrated in the scenario where the child object
gets killed if its parent object is killed?
a) Aggregation
b) Composition
c) Encapsulation
d) Association
Ans: B

60. What concept in Java is demonstrated in the scenario where object has its own
lifecycle and the child object cannot belong to another parent object?
a) Aggregation
b) Compostion
c) Encapsulation
d) Association
Ans: A

61. Method overriding is combination of polymorphism and inheritance. Evaluate
the validity of the statement.
a) True
b) false
c) Both
d) None
Ans: A

Unit- I

Programming in JAVA Page | 88

62. Which component is utilised forcompilation, debugging and execution of a
Java program?
a) JVM
b) JDK
c) JIT
d) JRE
Ans: B

63. Which component is responsible for converting byte code into machine
specific code?
a) JVM
b) JDK
c) JIT
d) JRE
Ans: A

64. Which component is responsible for running a Java program?
a) JVM
b) JDK
c) JIT
d) JRE
Ans: D

65. Which component is responsible for optimisation of byte code to machine
code?
a) JVM
b) JDK
c) JIT
d) JRE
Ans: C

66. Which are the following statements about Java is valid?
a) Platform independent
b) Platform dependent
c) Code dependent
d) Sequence dependent
Ans: A

Unit- I

Programming in JAVA Page | 89

67. Which of the following is an invalid identifier with main () method?
a) Private
b) Public
c) Static
d) None
Ans: A

68. What is the default file extension for Java code files?
a) .java
b) .cpp
c) .txt
d) None
Ans: A

69. Which is the default file extension for compiled Java classes?
a) .class
b) .js
c) .c
d) None
Ans: A

70. How can we identify whether a collection entity is a class or an confluence
from a .class file?
a)Extension of compilation unit
b) Java source file header
c) The class or interface name should be postfixed with unit type
d) None
Ans: B

71. What is the use of interpreter?
a) It is a synonym for JIT
b) It is a synonym for JVM
c)They read high level code and execute them
d) None
Ans: C

Unit-II

Conditional Statements
and

Loops

Unit- II

Programming in JAVA Page | 91

Decision Making Statements: if, else if, else if, else ladder, Nested if statements,
Switch Statements. Loops: Introduction to different types of Loops, For Loop,
While loop, Do While Loop, Nested Loops.

Aims and Objectives: 92

2.0 Conditional Control Statements 92

2.1. Selection Statements 92

2.1.1. Simple If 93

2.1.2 If-else 94

2.1.3 Nested if 96

2.1.4 Else if-ladder 98

2.1.5 Switch statement 101

2.1.6 Break Statement 103

2.1.7 Continue Statement 105

2.1.8 Labelled Statements 106

2.1.9 Labelled Break 106

2.1.10 Labelled Continue 108

2.2 While Statement 109

2.2.1 Do-While Statement 111

2.3 For loop 113

2.4 Enhanced for loop 115

2.5 Nested for loop 116

2.6 Summery 117

2.7 Exercise 118

2.8 Multiple Choice Questions 119

Unit- II

Programming in JAVA Page | 92

Aim of the Unit:

 The aim of the unit is to cover fundamental concept of Conditional Control
Statements and Loop Statements.

Objective:

 Java programming language is a cross platform, genericidea programming
language commonly worn in critical applications such as banking systems.
Objective of this unit is to provide basic insight into the core features of java
programming language. Decision Making Statements: if, else if, else if, else ladder,
Nested if statements, Switch Statements.Loops: Introduction to different types of
Loops, For Loop, While loop, Do While Loop, Nested Loops.This unit also intends
to illustrate key concepts through easy to understand examples for enhancing the
understanding the reader.

2.0. Conditional Control Statement is Java:

The conditional Control Statements are worn to control the wind of our program
Execution. The conditional control statements are divided in to 3 types. Those are:

1) Selection Statements
2) Loop Statements or Iteration Statements
3) Jump Statements

2.1. Selection statements:
Selection statements or Decision making is executed in java with if statements and
“switch statements”.

1) Simple if
2) If....else
3) Nestedif
4) Else if....ladder

Unit- II

Programming in JAVA Page | 93

2.1.1. Simple if: This is used to provide the explanation is finished only when the

condition is true. Conditions commonly associate relation of variables for identify

or disparity.

Syntax:

If (condition)

{

Statement;

}

Statement;

Ex. Program 1:

class IfExample

{

public static void main(String[]args)

{

int p=7, q=1;

if (p > q)

{

System.out.println(“p is big”);

}

}

}

Output:

p is big

Unit- II

Programming in JAVA Page | 94

Ex. Program 2:
class IfExample
{
public static void main (Strin [] args)
{
int age=25;
if (age>20)
{
System.out.println (“Age is more than 20”);
}
}
}
Output:
Age is more than 20.

2.1.1. If....else:
It is a2-methodsplittingdescription and is an expansion of the basic if statement and

instructthe program what to do in case the condition decides to false.

Syntax:

If (condition)

{

Statement;

}

Else

{

Statement;

}

Unit- II

Programming in JAVA Page | 95

Ex. Program1

public class IfElseExample
{
public static void main (String[] args)
{
int s = 20, t =25;
if (s > t)
{
System.out.println(“ s is big”);
}
else
{
System.out.println(“t is big”);
}
}
}
Output:
t is big

EX. Program 2
public class IfElseExample
{
public static void main (String[] args)
{
int a=10;
if (a%4==0)
{
System.out.println(“even number”);
}
else
{

Unit- II

Programming in JAVA Page | 96

System.out.println(“odd number”);
}
}
}
Output:
Odd number
2.1.2.
2.1.3. Nested if:
When if...else statement is placed inside another if...else statement then it is also

known as nested if…else statement. Th is used for making multiway decisions

Syntax:

If(condition)

{

If(condition)

{

statement;

}

else

{

statement;

}

}

else

{

statement;

}

Unit- II

Programming in JAVA Page | 97

Ex. Program1
public class NestedIfExample
{
public static void main (String[] args)
{
int p = 25, q =20, r =15;
if (p > q)
{
if (p > r)
{
System.out.println(“p is big”);
}
}
}
Output:
p is big

Ex. Program2
public class NestedIfExample
{
public static void main(String args[])
{
int p = 10;
int q = 5;
if(p == 10)
{
if(q == 5)
{
System.out.print("p = 10 and q = 5");
}
}
}
}
Output:
p=10and q=5

Unit- II

Programming in JAVA Page | 98

2.1.4. Else if....ladder:
In else if ladder the <condition 1> is classified first. In case it classifies to true,

then the statements 1 will be executed. The comfort of the if-else-if construct is not

present here.

If <condition 1>evaluates to false, then <condition 2> is evaluated; if <condition

2>evaluates to false, <condition 3> is evaluated.

This process is repeated until a condition comes to be true. At this stage, the

statements immediately following the associated if or else-if are executed.

Syntax:

The flow chart for else if ladder is given below:

Unit- II

Programming in JAVA Page | 99

Ex. Programs 1:
public class IfElseIfExample
{
public static void main (String[] args)
{
int m= 55;
if (m < 40)
{
System.out.println (“fail”);
}
else if (marks>= 40 && marks< 54)
{
System.out.println (“D grade”);
}
else if (marks>= 55&& marks< 69)
{
System.out.println (“C grade”);
}
else if (marks>= 70&& marks< 79)
{
System.out.println (“B grade”);
}
else if (marks>=80 && marks< 89)
{
System.out.println (“A grade”);
}
else if (marks>=90 && marks<100)
{
System.out.println (“A+ grade”);
}
else
{
System.out.println (“Invalid”);
}

Unit- II

Programming in JAVA Page | 100

}
}
Output:
C grade

Ex. Programs 2:
public class IfElseIfExample
{
public static void main(String[] args)
{
int num = 0;
if (num > 0)
{
System.out.println("Number is positive.");
}
else if (num < 0)
{
System.out.println("Number is negative.");
}
else
{
System.out.println("Number is 0.");
}
}
}
Output:
Number is 0

Unit- II

Programming in JAVA Page | 101

2.1.5. The Switch Statement:
Switch case statements are used to check variousdifferent execution paths. A

switch couldbe worn withprimitive data types such as the int, char, byte and short.

Java has a built in multi-way design statement called switch

The expression inside the switch case may be an integer or a character.

Since JDK 1.7 we have facility to take a String inside the switch case.

Each case must be end with colon (:)

The code inside default statement is executed if there is no match with any case

specified in the switch case.

Each case must be terminated with a break; statement.

Syntax:

switch(expression)

{

case value1: statement();

break;

case value2: statement();

break;

case value3: statement();

break;

default: statement();

break;

}

Unit- II

Programming in JAVA Page | 102

Example:

switch (Month)

{

case1:

System.out.println("January");

break;

case2:

System.out.println("February");

break;

case3:

System.out.println("March");

break;

case4:

System.out.println("April");

break;

case5:

System.out.println("May");

break;

case6:

System.out.println("June");

break;

case7:

System.out.println("July");

break;

case7:

System.out.println("August");

break;

Unit- II

Programming in JAVA Page | 103

case7:

System.out.println("September");

break;

case7:

System.out.println("October");

break;

case7:

System.out.println("November");

break;

case7:

System.out.println("December");

break;

default: System.out.println("Invalid entry");

}

2.1.6. The Break Statement:
This statement is elective. Where everthe user does notuse the break statement,

execution aim maintain within the beside case. It is constantly required to keep

various cases on the outsideany break statements in within authority. Here

following Syntax are given.

Unit- II

Programming in JAVA Page | 104

Example Program of Break Statement:

class Switch

{

public static void main(String args[])

{

int month = 4; String season; switch (month)

{

case 12:

case 1:

case 2:

season = "Winter";

break;

case 3:

case 4:

case 5:

season = "Spring";

break;

case 6:

case 7:

case 8:

season = "Summer";

break;

case 9:

case 10:

case 11:

season = "Autumn";

break;

Unit- II

Programming in JAVA Page | 105

default:

season = "Bogus Month";

}

System.out.println("April is in the " + season + ".");

}

}

2.1.7. Continue Statement:
This statement is worn to omitpausing part of an iteration of the loop when a

condition is true, and continue remaining iterations of the loop.

The continue statement is normally placed within if statement. Loop Control

Statements:

Flow Diagram of Continue Statement:

Unit- II

Programming in JAVA Page | 106

Example Program of Continue Statement:

class cont

{

public static void main(String args[])

{

for (int j=0;j<=10;j++)

{

if (j%2!=0) continue;

System.out.print(j+"\t");

}

}

}

Output: D:\java>javac cont.java

D:\java>java cont

0 2 4 6 8 10

2.1.8. Labelled Statements:

2.1.9. Labelled Break:
The labelled break statement can be used like goto statement in Java. While the

labelled break statement is undergone the control is shiftedaway of the named

block.

Syntax:

break label;

Here name of the label is label that describes the section of code. The section

should be named before using the break statement.

Unit- II

Programming in JAVA Page | 107

The syntax for declaring a Label:

identifier:

Example:

/* Example for labelled break */

class brklab

{

public static void main(String args[])

{

Outer: for (int i=1; i <= 10;i++)

{

for (int j=1; j <= 10;j++)

{

System.out.print("*");

if (i==j) break outer;

}

System.out.println();

}

}

}

Output:

D:\java>javac brklab.java

D:\java>java brklab

*

D:\java>

Unit- II

Programming in JAVA Page | 108

2.1.10. Labelled continue:
This labelled continue statement can beworn to leap part of the loop and continue

iteration including the labelled loop

Syntax:

continue label;

Example:

class brkcon

{

public static void main(String args[])

{

Outer: for(int i=1;i<=50;i++)

{

if (i==6) break;

System.out.println();

for (int j=1;j<=;50;j++)

{

System.out.print("* ");

if (i==j) continue outer;

}

}

}

}

Unit- II

Programming in JAVA Page | 109

Output:

D:\java>javac brkcon.java

D:\java>java brkcon

*

* *

* * *

* * * *

* * * * *

* * * * * *

2.2. While Statement:
This executes a section of statements repeatedly as continued as a described

condition is true.

Syntax:

while(condition)

{

statement(s);

}

next_statement;

The (condition) may be any valid Java expression.

The statement(s) may be either a single or a compound (a block) statement.

Execution:

When a while statement is reached during program execution, the following events

occur:

1. The (condition) is evaluated to either true or false.

Unit- II

Programming in JAVA Page | 110

2. If (condition) evaluates to false the while statement terminates and execution

passes to the immediate statement after the loop that is the next_statement.

3. If (condition) evaluates to true the statement(s) inside the loop are executed. 4.

Then, the execution returns to step number 1.

Example:

int i=0; //Initialize loop variable

System.out.println("Even numbers\n");

while(i<=10)

{

System.out.println(i); i+=2;

}
Ex.Program1

public class WhileExample

{

public static void main(String[] args)

{

int i=90;

while(i<=100)

{

System.out.println(i);

i++;

}

}

}

Unit- II

Programming in JAVA Page | 111

Output:

90

91

92

93

94

95

96

97

98

99

100

2.2.1. do..while Statement:
do..while loop is used when it is required to run some statements and functions at

least once before checking the condition to execute the loop.

Syntax:

do

{

statements;

}

while(condition);

next Statement;

Unit- II

Programming in JAVA Page | 112

Execution:
1. The statement in the do..while block is executed once.
2. Evaluate the condition.
3. If the condition is evaluated to true then goto step1. If the condition is evaluated
to false then goto step 4.
4. Execute the statement following the do..while statement.

Example:
int n = 12345;
int t,r = 0;
System.out.println("The original number : " + n);
do
{
t = n % 10; r = r * 10 + t; n = n / 10;
}
while (n > 0);

Ex.Program
public class DoWhileExample
{
public static void main(String [] args)
{
int i=11;
do
{
System.out.println(i);
i++;
}
while(i<=20);
}
}

Unit- II

Programming in JAVA Page | 113

Output:
11
12
13
14
15
16
17
18
19
20

2.3. for loop:
This for loop statement is identical in operation to the while loop. This is worn to

finishgroup of statements regularlyfor a fixed number of iterations.

Syntax:

for(initialization; termination; increment/decrement)

{ statements;

}

next Statement;

Execution:

1. When the loop is first reached within the program, the initialization part of the

loop is executed. Usually, this is an expression that is used to set the value of the

loop control variable, which acts as a counter that controls the loop.The

initialization expression is only executed once.

2. Next, the condition expression is evaluated. This must be a Boolean expression.

It tests the loop control variable against a target value specified by the

Unit- II

Programming in JAVA Page | 114

programmer. If this expression evaluates to true, then the body of the loop is

executed. If not, the loop terminates.

3. Next, the increment/decrement part of the loop is executed. This is usually an

expression that increments or decrements the loop control variable.

4. The loop is then iterated, first evaluating the conditional expression, then

executing the code inside the loop, and then executing the increment/decrement

expression in each iteration. This process repeats until the controlling expression is

evaluated to false.

Example:

for (int i=0; i<=5; i++)

{

System.out.println("Value of i :" + i);

}

public class ForExample

{

public static void main(String[] agrs)

{

for(int i=11;i<=20;i++)

{

System.out.println(i);

}

}

}

Unit- II

Programming in JAVA Page | 115

Output:

11

12

13

14

15

16

17

18

19

20

2.4. Enhanced for loop:
Since JDK 1.5 Java introduce one more loop called Enhance for loop. This loop is

worn to iterate over a collection without the needof creating an Iterator or

externallykeep evaluating the initialisation and eliminating conditions for a counter

variable.

This loop was build as analternativesincethe user don't use the evidence of the

factor. This enhanced for loopup to datethe loop operations.

int a[]= {50,60, 70, 80, 90};

for(int p: a)

{

System.out.println(p);

}

Unit- II

Programming in JAVA Page | 116

2.5. Nested for loop:
When a for loop is written under another for loop then it is called as nested for

loop. The first for loop is known as the outer loop and the second for loop is called

as the inner loop.

In case of nested loop the inner loop executes each time the outer loop gets

executed.

Example:

public class ForLoop

{

public static void main(String[] args)

{

for(int i = 1; i <= 5;i++) // Outer Loop

{

for(int j = 0; j <= i;j++) //Inner Loop

{

System.out.print(i);

}

System.out.println();

}

}

}

Output: D:/JAVA>javac ForLoop.java D:/JAVA>java ForLoop

1

22

333

4444

55555

Unit- II

Programming in JAVA Page | 117

2.6. Summary:

This unit has provided a detailed introduction to the Java programming language.

As Java is an object oriented language, the concept of classes is very important to

understand and this has been presented in the unit in the various sections. The

concept this unit is to provide basic insight into the core features of java

programming language. Decision Making Statements: if, else if, else if, else ladder,

Nested if statements, Switch Statements.Loops: Introduction to different types of

Loops, For Loop, While loop, Do While Loop, Nested Loops.This unit also intends

to illustrate key concepts through easy to understand examples for enhancing the

understanding the reader.Java is a powerful programming language and its basics

have been covered here. However, in order to gain proficiency in the language it is

important to write lots of code in the language and practice regularly.

Unit- II

Programming in JAVA Page | 118

2.7. Exercises:

1. Write a Program using 2 loops to produce the output given below

&&&&&&&

&&&&&&

&&&&&

&&&&

&&&

&&

&

2. Write a program using if, else if and else to solve quadratic equations

3. Write a program from the user and prints the greatest number

4. Write a program to find the number of hours in a day, number of days in

month and number of months in a year.

5. Write a program print the first 100 natural numbers using if condition

6. Write a program take a month and display that month is a leap month or not

Unit- II

Programming in JAVA Page | 119

2.8. Multiple Choice Questions:
1. What is the selection statements test only for equality?
a) Switch
b) if-else
c) Break
d) None

Ans: A

2. If Statement is a
a) Control Statement
b) Break
c) Loop
d) None

Ans: A

3. Break Statement is used for

a) Giving statement
b) Break the Execution
c) Used to Break Loop
d) None

Ans: C

4. Branching is used for

a) Random flow and Continue to part of the code
b) sequential flow and jumps to another part of the code
c) Continue the code
d) None

Ans: B

5. Conditional Branching uses

a) Branching is based on a particular condition
b) based on a loop
c) continue on a random
d) None

Ans: A

Unit- II

Programming in JAVA Page | 120

6. If-Else statement is an

a) Executable file
b) Extension of simple if statement
c) Extension of else if ladder
d) None

Ans: B

7. What is the use of Do Statement?

a) do statement is used to execute the code of a loop once
b) do statement is creating files
c) do statement is reporting files
d) None

Ans: A

8. which is not decision making statement

a) break
b) switch
c) do-while
d) None

Ans: C

9. Switch statement used for

a) go
b) Break
c) Continue
d) None

Ans: B

10. Which is not decision making statement

a) break
b) switch
c) do-while
d) None

Ans: C

Unit- II

Programming in JAVA Page | 121

11. The conditional Control Statements are used to

a) Control the flow of program Execution

b) Check the Program Errors

c) Return the Value

d) None

Ans: A

12. The conditional control statements are divided in to

a) 2 types

b) 3 types

c) 4 types

d) None

Ans: B

13.Simple if used to provide the statement is executed only when the condition is

a) True

b) False

c) Both A&B

d) None

Ans: A

14. When if...else statement is placed inside another if...else statement then it is
called

a) nested if…else statement

b) simple if

c) else if

d) None

Ans: A

Unit- II

Programming in JAVA Page | 122

15. if-else is a ____________ branching system

a) One way

b) two way

c) three way

d) None

Ans: B

16. Switch case statements are used to check variousdifferent

a) Execution paths

b) Creation Paths

c) Editing Paths

d) None

Ans: A

17. Java has a built in multi-way design statement called

a) Continue
b) IF
c) Switch
d) None

Ans : C

18. The break statement is

a) Optional
b) Compulsory
c) Both a & b
d) None

Ans : A

19. The continue statement is normally placed within

A) if statement
B) while Statement
C) Breaking
D) None

Ans : A

Unit- II

Programming in JAVA Page | 123

20. The _________________can be used like goto statement in Java

a) Continue

b) labelled break statement

c) Switch

d) None

Ans : B

21. The _________________can be used to skip part of the loop and continue
iteration with the labelled loop

a) Continue

b) labelled break statement

c) labelled continue statement

d) None

Ans : C

22. ____________ executes a block of statements repeatedly as long as a specified
condition is true.

a) If
b) If-Else
c) While
d) None

Ans : C

23. ________________ is used when it is required to run some statements and
functions at least once before checking the condition to execute the loop.

a) do..while loop
b) While
c) For
d) None

Ans : A

Unit- II

Programming in JAVA Page | 124

24. The __________________ is similar in operation to the while loop. It is used
to execute set of statements repeatedly for a fixed number of iterations.
a) If
b) for loop statement
c) Break
d) None
Ans : B
25. ___________________ is used to iterate through a collection without the
needof creating an Iterator.

a) Enhanced for loop
b) Continue
c) Break
d) None

Ans : A
26. When a for loop is written under another for loop then it is called as

a) nested for loop.
b) Enhanced for loop
c) Continue
d) None

Ans : A
27. While is an ___________ Loop Statement
a) Entry Controlled
b) Exit Controlled
c) Middle Controlled
d) None
Ans : A
28. While is an ___________ Loop Statement
a) Entry Controlled
b) Exit Controlled
c) Middle Controlled
d) None
Ans : A

Unit- II

Programming in JAVA Page | 125

29. While is an ___________ Loop Statement

a) Entry Controlled

b) Exit Controlled

c) Middle Controlled

d) None

Ans : A

30. While is an ___________ Loop Statement

a) Entry Controlled

b) Exit Controlled

c) Middle Controlled

d) None

Ans : A

Unit-III

Classes & Objects:

Unit- III

Programming in JAVA Page | 127

Preface to Classes, Confirming Classes, Building an Object - Methods –

Overloading methods, overloading constructors, Access Control Specifiers,

concept of Static and Abstract (Simple application based examples).

3.0 Aims and Objectives 129

3.1 Introduction 129

3.1.1 Defining and declaring a class 132

3.1.2 Adding variables 133

3.2 Creating an Object 134

3.2.1 Accessing class members 137

3.2.2 Constructors 140

3.3 Methods 145

3.3.1 Adding methods 146

3.3.2 Overloading methods 148

3.3.3 Overloading constructors 152

3.3.4 Access Control Specifiers 156

3.3.5 Nesting of methods 161

3.4 Concept of Static and Abstract (Simple application based examples) 163

3.5 Multithreaded Programming 169

3.5.1 Introduction 169

3.5.2 Creating Threads 170

3.5.3 Extending the Threads 170

3.5.4 Stopping and Blocking a Thread 174

3.5.5 Lifecycle of a Thread 174

Unit- III

Programming in JAVA Page | 128

3.5.6 Using Thread Methods 180

3.5.7 Thread Exceptions 181

3.5.8 Thread Priority 182

3.6 Synchronization 183

3.6.1 Implementing the ‘Runnable’ Interface 184

3.7 Arrays 186

3.7.1 Arrays 187

3.7.2 One-dimensional arrays 187

3.7.3 Creating an array 187

3.7.4 One-dimensional arrays 187

3.7.5 Two- dimensional arrays 189

3.8 Strings 190

3.9 Vectors 195

3.10 Wrapper classes 196

3.11 Summary 198

3.12 Exercise 199

3.13 Objective Type Questions 200

Unit- III

Programming in JAVA Page | 129

3.0 AIMS AND OBJECTIVES:
The aim of the unit is to cover fundamental concept of Object, Class and methods
in depth.

Java is a cross platform, general purpose programming language commonly used
in critical applications such as banking systems. Objective of this unit is to provide
basic insight into the core features of java programming language. Such as Preface
to Classes, Confirming Classes, Building an Object - Methods – Overloading
methods, overloading constructors, Access Control Specifiers, concept of Static
and Abstract (Simple application based examples). This unit also intends to
illustrate key concepts through easy to understand examples for enhancing the
understanding the reader.

3.1 INTRODUCTION

Objects:

This is the mainreunitebody in anyProgramming system. The objects are
representing a person, thing, a loan account, and a console of
informationeithereachaspect that the schedule may hold.

These are exclusivethat theycontestsharplyalongcertainearth objects. Objects takes
up location in the consciousness and have an identified address. While program is
executing the objects may merge with each other by posting messages. Several
objects consist of information and code to mold the information. Objects are
represented as shown below.

Name of the Student Object

Name Data

Roll No

Marks () Methods

Pass()

Unit- III

Programming in JAVA Page | 130

Classes:

Here group of objects that hold same buildings are called as Class. Itcould be

reflectionabout as a “data type” and an object as a “variable” of that type. Before a

Class has been described, the programmercouldbuildseveral numbers of objects

associating via this class.

Example:Banana, orange and apple are members of the class “Fruits”

FruitBanana;

These are User-defined data types and performconform the implicitvariety of

programming language.

3.1.1 DEFINING AND DECLARING CLASS
A logical entity which determines a template to make a specific type of object is

referred to as a class. Classes are used when we want to create multiple objects

with similar properties and methods. A class may contain instance variables, local

variables or class variables. Classes are often largelyworn in java while effecting

object oriented programming concepts such as polymorphism, inheritance and

encapsulation. If the application makes use of properly structured classes,

repetitive code can be avoided and high efficiency can be achieved.

A Java class may consist of fields, methods, constructors, blocks, nested class and

interfaces. A class in Java can have two types of access modifiers .e public and

default. Java classes can never be protected or private. Meaningful names should

be to classes and the names can never begin with a number in Java. Keyword

extends can be used if the class has any superclass. In case the class implements

interfaces, the keyword implements should be used. Multiple interfaces can be

specified by separating them with a comma.

Unit- III

Programming in JAVA Page | 131

Defining a class:

class classname [extends superclass name]

{

[fields declarations;]

[methods declarations;]

}

In the above syntax the name of the class is “classname”. Each thing internal the

flower brackets are elective. That measures that the succeeding would be a true

class explanation.

Example:

class nayan

{

}

 Here the statements are blank; this class does not consist of severalresources

and thus could not do everything.

EXAMPLE OF A CLASS:

public class Human

{

String name;

int age;

String occupation;

void working ()

{

//method details

}

void working()

Unit- III

Programming in JAVA Page | 132

{

/method details

}

void sleeping()

{

//method details

}

}

In the above example, a human class is defined. It has three fields and three

methods. Any number of objects may be created with help of this class.

EXAMPLE OF CLASS:

class Teacher

{

int number;

String name;

float salary;

void insert(int n, String s, float f)

{

number=n;

name=s;

salary=f;

}

void display(){System.out.println(number+" "+name+" "+salary);

}

}

public class TestTeacher

Unit- III

Programming in JAVA Page | 133

{

public static void main(String[] args)

{

Teacher t1=new Teacher ();

Teacher t2=new Teacher ();

Teacher t3=new Teacher ();

t1.insert(001,"Chandra mukarji",150675);

t2.insert(002,"Annapurna",75670);

t3.insert(003,"nayan",75760);

t1.display();

t2.display();

t3.display();

}

}

Output:

001 Chandra Mukarji150675

002Annapurna75760

003 nayan 75760

In the above example, a Teacher class is defined. It has three fields and two

methods. We have created three objects with help of this class.

3.1.2 ADDING VARIABLES
It is similar to declaring local variables but they may have access modifiers like

public, private, static and etc.

Example:

class Rectangle

{

Unit- III

Programming in JAVA Page | 134

int length;

int width;

}

These variables are also called as instance variables or member variables.

3.2 Creating an Object:
Availableto continueseveralapproaches in whicheverthe user couldbuild an object

in java. They are described below:

The most popular way to build an object in java programming language is to act

this new keyword.

Syntax:

// object of class Building

Building x = new Building ();

The predefined class in Java package - java.lang which is named as ‘Class’ can be

used to create objects. It has a method - for Name (String class_name) which

returns the Class Object.

Syntax:

// object of class Car

// class Car is in p1 package

Car myobj1 = (Car) Class.forName ("p1.Car").newInstance();

The concept of deserialization can also be used to create objects from files as given

in the below example:

Syntax:

FileInputStream my_fStream = new FileInputStream(my_filename);

ObjectInputStream in1 = new ObjectInputStream(my_fStream);

Object myobj = in1.readObject();

Unit- III

Programming in JAVA Page | 135

In the above example myobj is created with the help of the contents of the file with

the name my_filename.

The clone() method of the Object class can be used to create objects. It will return

the object after the creation.

Syntax:

// creating object of class Test

MyClass x = new MyClass();

// creating clone of above object

MyClass y = (MyClass)x.clone();

Example of Object:

class employee

{

int empid;

String name;

void insertRecord(int r, String n)

{

empid=r;

name=n;

}

void displayInformation(){System.out.println(empid+" "+name);

}

}

class Testemployee

{

public static void main(String args[])

{

employee e1=new employee ();

Unit- III

Programming in JAVA Page | 136

employee e2=new employee ();

e1.insertRecord(001,"varshini");

e2.insertRecord(002,"nayan");

e1.displayInformation();

e2.displayInformation();

}

}

Output:

001 varshini

002nayan

In the above example, Employee class is defined. It has two fields and two

methods. We have created two objects with help of this class.

class Rectangle

{

int length;

int width;

void getData (int s, int t)

{

length=s;

width=t;

}

int rectArea()

{

int area=length* width;

return(area);

}

}

Unit- III

Programming in JAVA Page | 137

class RectArea

{

public static void main(String args[])

{

int area1, area2;

Rectangle rect1=new Rectangle();

Rectangle rect2=new Rectangle();

rect1.length=15;

rect1.width=10;

area1=rect1.length*rect1.width;

rect2.getData(20,12);

area2=rect2.rectArea();

System.out.println(“Area1=”+area1);

System.out.println(“Area2=”+area2);

}

}

Output:

Area1=150

Area2=240

3.2.1 ACCESSING CLASS MEMBERS
In Accessing class members a class is a user describe data type and it is a number

of data members and member functions. A class in Java can be created by proving

the keyword “class”.

Unit- III

Programming in JAVA Page | 138

Defining a class:

class classname [extends superclass name]

{

[fields declarations;]

[methods declarations;]

}

 In the above syntax the name of the class is “classname”. Each thing internal

the flower brackets are elective. That measures that the succeeding would be a true

class explanation.

Example:

class Empty

{

}

Here the statements are blank; this class does not consist of severalresources and

thus could not do everything.

Fields declaration:

It is similar to declaring local variables but they may have access modifiers like

public, private, static and etc.

Example:

class Rectangle

{

int length;

int width;

}

These variables are also called as instance variables or member variables.

Unit- III

Programming in JAVA Page | 139

Methods declaration:

A class including individual information enclosures gets not activity. The user

need hence sum mate approaches a particular act required since manage the

information. Approaches obtain stated internal the build about the class,

althoughrapidly ensuing expression of exponent variables. The generic pattern of a

approach information is:

type methodname (Parameter_List)

{

Method_body;

}

There are four parts of Method declaration.

i) Name of the method

ii) Type of the value return

iii) The list of the parameters

iv) Body of the method.

Example:

class Rectangle

{

int l;

int w;

void getData (int s, int t)

{

l=s;

w=t;

}

}

Unit- III

Programming in JAVA Page | 140

Assuming that anapproachdo not restoringeither value again the restoring type is

“void”.

Creating objects:

In java programming language Objects continue build proving the “new” operator.

This new operator builds in object of the described class and restoring a source to

that object.

Syntax:

classname objectname= new classname();

Example:

Rect r1= new Rect();

Accessing class members:

Each and every variable need be assigned values since they are worn. Since we are

outside the class, we cannot approach the exponent variables and the approaches

exactly. That’s way the user use the object and the dot operator.

Syntax:

Name of the object. Name of the variable= value;

Name of the object. Name of the Method (parameterlist);

Example:

rect1.length=10;

rect1.getData(10, 11);

3.2.2 CONSTRUCTORS
It is a particular type of associate function that takes the similar name as that of the

class and it is called automatically when the objects are created.

 Constructors are worn to load the data members of a class.

 It should not get any return type, even void.

 Constructors may have parameters.

Unit- III

Programming in JAVA Page | 141

Syntax:

class classname

{

classname([parameters list])

{

}

}

Constructors can be mainly of three types.

i) Default constructor

ii) Parameterized (or) Overloaded constructor

iii) Copy constructor

Default constructor:

The constructor with no parameters is called as default constructor. It is best used

for initialization of data members.

Example:

class DefCons

{

DefCons() Default constructor

{

System.out.println (“Constructor called”);

}

}

class ConsDemo

{

public static void main(String args[])

{

Unit- III

Programming in JAVA Page | 142

DefCons d1=new DefCons();

DefCons d2=new DefCons();

}

}

Output:

Constructor called

Constructor called

Parameterized constructor:

The constructor including parameters is also known as parameterized constructor.

Example:

class Emp

{

int emp id;

String emp name;

//building a parameterized constructor

emp(int id,String name)

{

Emp id = id;

Emp name = name;

}

//method to display the values

void display()

{

System.out.println(emp id+" "+emp name);

}

public static void main(String args[])

Unit- III

Programming in JAVA Page | 143

{

//building objects and passing values

emp e1 = new emp(001,"manju");

emp e2 = new emp(002,"varshini");

//calling method to display the values of object

E1.display();

22.display();

}

}

Output:

001 manju

002 varshini

Copy constructor:

Copy constructor is worn to take the information of simple object to different

object. It takes object as a parameter.

Example:

class nayan

{

int stuid;

String stuname;

//constructor to load integer and string

nayan(int stuid,String stuname)

{

stuid = i;

stuname = n;

}

Unit- III

Programming in JAVA Page | 144

//constructor to load one more object

nayan(nayan N)

{

stuid = N.stuid;

stuname =N.stuname;

}

void display()

{

System.out.println(stuid+" "+stuname);

}

public static void main(String args[])

{

nayan N1 = new nayan(001,"manju");

nayan N2 = new nayan(N1);

N1.display();

N2.display();

}
}

Output:

001 manju

Unit- III

Programming in JAVA Page | 145

3.3 METHODS
A method contains a set of statements which serve a purpose of performing a

specific task. A method may or may not return something. The main advantages of

methods are that it allows us to avoid having repetitive code by allowing us to

reuse code.

The declaration of method may have a return type, parameters, exceptions and

access modifier. A method maybe declared as public, private, protected. Wherever

notapproachconditioner is described, the approach is available inside the class and

the package in which it has been defined. Public specifier will allow the method to

be accessible to classes even outside the package whereas the private specifier will

mean that the approach actapart be called inner the class in whichever it is defined.

Access modifiers are used to implement the concept of encapsulation in java.

The return type of a method may be void or any other data type. The parameters of

the method must be given inside the enclosed brackets. While calling the method,

parameters must be supplied in the same order in which they are in the declaration.

If the method is expected to throw any exceptions, they must be given using the

throws keyword.

Syntax:

public int my_method(String s)

{

// method body

}

In the above example, my approachreturns a specificlimitation of form string.

Example of Method:

public class smallno

{

public static void main(String[] args)

Unit- III

Programming in JAVA Page | 146

{

int s = 11;

int t = 6;

int r = small(s, t);

System.out.println("smallest number = " + r);

}

/** returns the smallest number of two numbers */

public static int small(int a1, int a2)

{

int low;

if (a1 > a2)

low = a2;

else

low = a1;

return low;

}

}

Output:

Smallest number= 6

In the above example, small method takes two parameters of type integer and

returns smallest number.

3.3.1 ADDING METHODS
In adding methods class isolated information area is no activity. The objects build

aside this class could not react to any information. For that we are using adding

methods for necessary for manage the information enclosed in the class. Adding

Unit- III

Programming in JAVA Page | 147

approaches act stated internal the build of the class although rapidly ensuing the

announcement of instance variables. The syntax of the adding approach is

Syntax:

Type name of the method

{

Body of the Method;

}

Four basic parts of method declaration

 Method name

 Nature of the assessment for approachrestoring

 Parameters list

 Body of the method

Example of Adding Method:

Public int max (int s, int t)

{

If (s>t)

Return s;

Else

Return t;

}

Here public is a modifier

Int is a return type

Max is method name

Int s, t is an index of the parameter

If (s>t) return s; else return t; are the body of the method

Unit- III

Programming in JAVA Page | 148

3.3.2 OVERLOADING METHODS
In scenarios where there is a need to perform the same task with different inputs.

There are many ways to overload a method and they are described below:

It is possible to overload a method by changing the number of inputs. An example

of doing so is given below:

class multiply

{

// method with two parameters

public int subtraction(int p, int q)

{

int result = p*q;

return result;

}

// method with three parameters

public int subtraction(int p, int q, int r)

{

int result = p-q-r;

return result;

}

In the above example, two approachesincluding the similar name are deca, red but

they have variousvalues of specifications which must be passed to them.

Method can also be overloaded by changing the data type:

class adding

{

// method with int data type parameters

public int adding(int s, int t)

{

Unit- III

Programming in JAVA Page | 149

int result = s+t;

return result;

}

// approach with float data type parameter

public float adding(float p, float q, float r)

{

float result = p+q+r;

return result;

}

In the above example, the method multiply() is overloaded and it returns different

data types in the two cases.

If the orders of parameters in the method are changed, it is also considered

overloaded.

 public void my_method(String s, int t)

{

System.out.println("first :"+ s +" "+"second :"+ t);

}

public void my_method(int s, String t)

{

System.out.println("first :"+ s +" "+"second :"+ t);

}

Therefore, there are many ways to overload a method and should be used

according to the needs.

Example of Method Overloading:

public class Method Overloading

{

public static void main(String[] args)

Unit- III

Programming in JAVA Page | 150

{

int s = 5;

int t = 7;

double a = 8.7;

double b = 5.6;

int output1 = smallFunction(x, y);

// same function name with different parameters

double output2 = smallFunction(a, b);

System.out.println("smallest Value = " + output1);

System.out.println("smallest Value = " + output2);

}

// for integer

public static int smallFunction(int a1, int a2)

{

int low;

if (a1 > a2)

low = a2;

else

low = a1;

return low;

}

// for double

public static double smallFunction(double a1, double a2)

{

double low;

if (a1 > a2)

low = a2;

Unit- III

Programming in JAVA Page | 151

else

low = a1;

return low;

}

}

Output:

Smallest value= 5

Smallest value= 5.6

In the above example, we are using only one method (function) name but return

type is different.

Example:

class Calc

{

public void multiply (int p, int q)

{

System.out.println(“multiply=”*(p*q));

}

public void sum (double p, double q)

{

System.out.println(“multiply=”*(p*q));

}

public void multiply (int p, int q, int r)

{

System.out.println(“multiply=”*(p*q*r));

}

}

Unit- III

Programming in JAVA Page | 152

class MethOverLoad

{

public static void main(String args[])

{

Calc c1= new Calc();

c1.sum(9, 20);

c1.sum(10.5, 22.5);

c1.sum(9, 20, 11);

}

}

Output:

Sum=29

Sum=33.0

Sum=40

In the above example, we are using only one method (function) name but

signatures are different.

3.3.3 OVERLOADING CONSTRUCTORS:

In java, in addition to methods it is also possible to overload constructors. This is

highly useful in scenarios where we need to initialize an object in different ways.

An example of this is given below:

class Player

{

String name,fav_fruit,fav_sport;

// constructor initialises three fields

Player(String n, String ff, String fs)

{

Unit- III

Programming in JAVA Page | 153

name=n;

fav_fruit=ff;

fav_sport=fs;

}

// constructor initialises two fields

Player(String n, String ff)

{

name=n;

fav_fruit=ff;

}

// constructor initialises one field

Player(String n)

{

name=n;

}

}

Therefore in the above example, three constructors are declared which gives us the

ability to initialize object in three different ways, i.e. with one, two or three

parameters.

Example of Overloading Constructor:

Class employeedata

{

Private int employeeid;

Private string employeename;

Private int employeeage;

Employeedata()

{

Unit- III

Programming in JAVA Page | 154

//default constructor

Employeeid=001;

Employeename=”new employee”;

Employeeage=23;

}

Employeedate(int n1, string s, int n2)

{

//parameterized constructor

Employeeid=n1;

Employeename=s;

Employeepage=n2;

}

//getter and setter methods

Public int getempid()

{

Return employeeid;

}

Public void setemployeeid(int employeeid)

{

This.employeeid=employeeid;

}

Public string getemployeename()

{

Return employeename;

}

Public void setempployeename(string employeename)

{

Unit- III

Programming in JAVA Page | 155

This.empployeename=employeename;

}

Public int getemployeeage()

{

Return employeeage;

}

Public void setemployeeage(int employeeage)

{

This.employeeage=employeeage;

}

Public static void main(string args[])

{

//this object inceptiondeterminecommand the error constructor

Employeedata myobject = new employeedata();

System.out.println(employee id is: “+myobject.getemployeeid());

System.out.println(employee name is: “+myobject.getemployeename());

System.out.println(employee age is: “+myobject.getemployeeage());

/* This object inceptiondeterminecommand the parameterized*/

/* constructor employeedata(int, string, int)*/

Employeedata myobject2 = new employyedata (0001, “Manju”, 23);

System.out.println(employee id is: “+myobj2.getemployeeid());

System.out.println(employee name is: “+myobj2.getemployeename());

System.out.println(employee age is: “+myobj2.getemployeeage());

}

}

Unit- III

Programming in JAVA Page | 156

3.3.4 ACCESS CONTROL SPECIFIERS:
Different access Specifiers are used according to the need of the logic of the

program. The top level (such as for classes) has only two available access

modifiers available. These are public and default modifiers. The member level

(such as for methods) can have any of the four available modifiers. The table

given below gives the details of the different access levels in different cases. There

are different types of Access Control Specifiers. These are Public, Protected,

Default and Private.

Modifier Class Package Subclass World

public Allowed Allowed Allowed Allowed

protected Allowed Allowed Allowed Not Allowed

default (no

specifier

given)

Allowed Allowed Not Allowed Not Allowed

private Allowed Not Allowed Not Allowed Not Allowed

Public Specifiers:

It is accomplish the maximum stage of convenience. Classes, approaches, and

ranges announced as public could be getting againsteach class in the Java

programming language, in case those classes act in the similar package or in

different package.

Example of Public Specifiers:

Public class nayan

{

Public a, b, size;

}

Unit- III

Programming in JAVA Page | 157

Example:

class P

{

public void display()

{

System.out.println("Iam Saying...");

}

}

class Q extends P

{

public void show()

{

System.out.println("Hello");

}

}

class PubDemo

{

public static void main(String args[])

{

Q obj = new Q();

obj.display();

obj.show();

}

}

Output:

Iam Saying...

Hello

Unit- III

Programming in JAVA Page | 158

Protected Specifiers:
In this protected Specifiers approaches and fields stated just as secured
couldisolatedabide gathered over the subclasses in alternative package or else each
class in a period the package of the secured member class. The securedapproach
Specifiers can’t continue related to class and interfaces.
Example of Protected Specifiers:
class Alpha
{
protected void display()
{
System.out.println("This method is protected");
}
}
class Beta extends Alpha
{
public void show()
{
System.out.println("Hello");
}
}
class ProtDemo
{
public static void main(String args[])
{
Beta obj = new Beta();
obj.display();
obj.show();
}
}
Output:
This method is protected
Hello

Unit- III

Programming in JAVA Page | 159

Default (no Specifiers):
While the user doesn’t usual approachspecifysincecomic element, it aim pursue
comicerror convenience stage. Existenthold noterror Specifiers keyword. Classes,
variables, and methods could be error accessed. Applyingerror Specifiers the user
could access class, method, or field whicheverexists to similar package, although
notagainstextreme this package.

Class Demo

{

Int a; (Default)

}

Example:

class Geek

{

void display()

{

System.out.println("Hello World!");

}

}

class DefDemo

{

public static void main(String args[])

{

Geek obj = new Geek();

obj.display();

}

}

Output:

Hello World!

Unit- III

Programming in JAVA Page | 160

Private Specifiers:

It manages the minimumstage of convenience. Theseapproaches and

rangescouldisolated be work intoin a particular the similar class to

whicheveractapproaches and rangesexist. Theseapproaches and ranges do not

clearin period subclasses includingdo not congenitalover subclasses. Such, these

access Specifiers is reversed to the public access Specifiers. Applyingthese

Specifiers the user can manage encapsulation and coverinformationagainst the

awayfrom world.

Public class varshini

{

Private double s, t;

Public set (int s, int t)

{

this.s = s;

this.t = t;

}

Public get ()

{

Return point (s, t);

}

}

Private:

class A

{

private void display()

{

System.out.println("It is a private method");

Unit- III

Programming in JAVA Page | 161

}

}

class PriDemo

{

public static void main(String args[])

{

A obj = new A();

//trying to access private method of another class

obj.display();

}

}

Save:

PriDemo.java

Compilation:

javac PriDemo.java

PriDemo.java:14: display() has private access in A

obj.display();

 ^

1 error

3.3.5 NESTING OF METHODS
Generally, approaches in anyOOPS (Object Oriented Programming Language)as
called by an object of that class. But here, a method could be known by its name
using one moreapproach of the same class. It is also known as nesting of methods.
Example:
class Nesting of methods
{
int y, z;

Unit- III

Programming in JAVA Page | 162

Nesting(int a, int b)
{
y= a;
z= b;
}
int highest()
{
if(y> =z)
return(y);
else
return(z);
}
void display()
{
int high= highest();
System.out.println(“highest value=”+high);
}
}
class Nestmethod
{
public static void main(String args[])
{
Nestingmethod n= new Nestingmethod(20, 10);
n.display();
}
}
Output:
Highest value= 20
In this example, Highest () approach is called from display () approach.

Unit- III

Programming in JAVA Page | 163

3.4 CONCEPT OF STATIC AND ABSTRACT (Simple application based

examples)

Static keyword:

Static members include static data members (class variables) and static

methods. These members are declared with the keyword “static”. These are also

called as class variables and class methods. To execute these static members we

need to create object for them.

In java blocks, variables, methods may be declared as static. Use of the static

keyword is described below:

Static blocks:

A block can be declared as static by using the following syntax:

class my_class

{

Static

{

// any code

}

}

All the code inside the static class is only executed once. This happens when the

class is first loaded.

Static variables:

In java, static variables can only declared at the class level.

Apartsimilarmodelabout the static variable is common amongst overall the objects

the class. Example of a static variable is given below:

class my_class

{

int x;

Unit- III

Programming in JAVA Page | 164

static int a ;

}

//Program of static variable

class Faculty

{

int Faculty id;

String Faculty Name;

Static String Faculty College ="TARAGDC";

Faculty (int r, String n)

{

Faculty id= r;

Faculty name = n;

}

void display (){System.out.println(Faculty Id+" "+ Faculty Name+" "+Faculty

College);

}

public static void main(String args[])

{

Faculty f1 = new Faculty(001,"Manju");

Faculty f2 = new Faculty(002,"Prasad");

f1.display();

f2.display();

}

}

Unit- III

Programming in JAVA Page | 165

Static methods:

A method in Java couldknown be stated as static. Main () approach in java is

known static. The main features of a static method are given below:

Static methods can not call non-static methods.

Static methods are only allowed to access other static information such as static

variables.

The use of ‘this’ and ‘super’ keyword is restricted inside the static method.

Static method program example is given below:

class my_class

{

// a static variable

static int x = 100;

// a non-static variable

int p = 120;

// a static method

static void static_method()

{

//no error

x = 20;

System.out.println ("from m1");

p= 10; // compilation error

//use of super keyword not allowed

System.out.println (super.x); // compiler error

}

Therefore, static methods are used in the above example and it will give compiler

error if the above mentioned restrictions are not considered.

Unit- III

Programming in JAVA Page | 166

Example of Static Method:

class Employee

{

int Empid;

String EmpName;

static String EmpOffice = "WIPRO";

static void change()

{

Empoffice = "WIPRO";

}

Employee(int r, String n)

{

Empid = r;

EmpName = n;

}

void display ()

{

System.out.println (Empid+" "+EmpName+" "+EmpOffice);

}

public static void main(String args[])

{

Employee.change();

Employee e1 = new Employee (001,"Manju");

Employee e2 = new Employee (002,"Prasad");

Employee e3 = new Employee (003,"Sadguna");

e1.display();

e2.display();

Unit- III

Programming in JAVA Page | 167

e3.display();

}

}

Example for static variable:

classstatic variable

{

staticintstuage;

staticStringstuname;

//it is a Static Method

staticvoid disp()

{

System.out.println("stuAge is: "+stuage);

System.out.println("stuName is: "+stuname);

}

// it is known a static method

publicstaticvoid main(String args[])

{

stuage =20;

stuname ="manju";

disp();

}

}

Output:

Stuage is: 20

Stuname is: manju

Unit- III

Programming in JAVA Page | 168

Abstract:
Abstract method:
It is a approach which don’t have in general body. It is defined with the keyword
“abstract”. An abstract method must be overridden. Whenever a class getsin
abstract approach, then that class shall also be announced as an abstract class.
Abstract class:
In this class may have both abstract methods and normal methods.The user can’t
needthese classes to instanced objects exactly.
** The abstract approachesbased onany abstract class requisite are described in its
subclasses.
Example:
abstract class Shape
{
abstract void draw();
}
class Rectangle extends Shape
{
void draw()
{
System.out.println(“It is an abstract method”);
}
}
class Test
{
public static void main(String args[])
{
Shape s1;
s1= new Rectangle();
s1.draw();
}
}

Unit- III

Programming in JAVA Page | 169

3.5 MULTITHREAD PROGRAMMING:

3.5.1 INTRDODUCTION:
It is a programming capacity via finish various processes in lateral placed upon

time-sharing approach. It is a function or outflow of result such could be formed to

compile testing time-sharing foundation. Multithread programming is necessary to

revoke a certain “Multi Threads moving in parallel” don’t actually system an

certain them absolutely bound by the similar extent. Considering entire threads

stand moving at a simple processor, the progress of result is common within

threads. The java programming language exponent holds the interchange of control

within the threads.

 General programs consist of apart a simple continuous progress of direction

the particular are also known as single-threaded programs. While the user finishes

such, the program creates, compiles over a progression of result, and lastly extent.

By each and every liable period of future, existent is particular single presentation

nether result.

 A thread does identical via a program such keep a separate continuity about

control. Thread keep an opening, a build and an extent, and assassinates commands

conclusively.

A program such keep various progress of control is also called as

“multithreaded program”. An exclusive assets about java programming language

act his hold since multithreading. A certain java programming language approves

us into need various continuance of control in establishing programs.

Light weight process: A thread does comparable to abstracted action, now such it

could amble separately of another thread. Still it hopes a light weight, as the

operating system does not permit it, private memory space, also it contribution

memory including the alternative threads in the action.

Unit- III

Programming in JAVA Page | 170

Heavy weight process: In thisprocess between threads that belong to different

programs, they demand separate memory.

3.5.2 CREATING THREADS:
Multithreading abide a programming language capacity via act dual action now

coordinate way over future dividing approach. These are completed general

effective model of things such have a method known as run (). This run ()

approach is the hole and heart of several thread.

Syntax:

 The run() approach would be request over any object in the exercised thread

by calling start() method.

Syntax:

new MyThread ().start ();

In java programming language, the user could build threads in two various

approaches.

1. By extending Thread class.

2. By implementing Runnable interface.

3.5.3 EXTENDING THE THREADS:
1. By extending Thread class:

Present, the user can build a thread class such extends “Thread” class and
abrogate mine run () approach upon the code needed over the thread. It builds
comic ensuing steps:

 Maintain the class just as extending the Thread class.
 Revoke the run () approach such describes the function of a thread.

(or) Implement the run () method.
 Build a thread object including command the start () approach to basic the

thread execution.

Unit- III

Programming in JAVA Page | 171

Example of Thread:

class New Thread extends Create Thread

{

public void run ()

{

----------// Code of the Thread.

}

}

class Nayan

{

public static void main(String args[])

{

NewThread p1=CreateNewThread();

p1.start ();

}

}

Example program to create a thread by extending thread class:

class X extends New Thread

{

public void run ()

{

for (int i=0; i<=5; i++)

{

System.out.println(“From New Thread X: i=”+i);

Unit- III

Programming in JAVA Page | 172

}

System.out.println(“Exit from X”);

}

}

class Y extends New Thread

{

public void run ()

{

for (int j=0; j<=5; j++)

{

System.out.println(“From New Thread B: j=”+j);

}

System.out.println(“Exit from Y”);

}

}

class Z extends New Thread

{

public void run ()

{

for (int k=0; k<=5; k++)

{

System.out.println(“From New Thread Z: k=”+k);

}

System.out.println(“Exit New from Z”);

}

}

class New ThreadTest1

Unit- III

Programming in JAVA Page | 173

{

public static void main(String args[])

{

new X().start();

new Y().start();

new Z().start();

}

}

Output:

From New Thread X: i=0

From New Thread X: i=1

From New Thread Y: j=0

From New Thread Y: j=1

From New Thread Z: k=0

From New Thread Z: k=1

From New Thread X: i=4

From NewThread Y: j=3

From NewThread Y: j=4

From NewThread Z: k=3

From NewThread Z: k=4

From NewThread X: i=5

Exit from X

From NewThread Y: j=5

Exit from Y

From NewThread Z: k=5

Exitfrom Z

Unit- III

Programming in JAVA Page | 174

3.5.4 Stopping and Blocking a Thread:

Stopping a thread:
Whenever any time the user via block a thread against moving another, the user

can do such over calling stop() approach.

t1.stop();

These statements explanation comic thread such act to entire state. A thread

attitude again acts to entire state naturally while pull influences entire edge about

mine approaches. This stop() approach could be worn while comic “premature

death” about a thread choose.

Blocking a thread:

Blocking a thread could further continue for a time drooping or closed against

accessing within the enable also finally working state away applying this one about

the ensuing thread approaches.

Sleep (t) :closedas‘t’ milli seconds

Suspend() : closedbefore resume() approach is implore

Wait() :closedbefore notify() is implore.

3.5.5 LIFECYCLE OF THREAD:
Over the periodabout a thread, existent continue several states it could arrive. It

includes:

 New born state

 Runnable state

 Running state

 Blocked state

 Dead state

Unit- III

Programming in JAVA Page | 175

New Born

Running Runnable

Dead

Blocked

A thread holds constantly in single about the particular five states. It could action

against single state viaone more via a shift about approaches as exposed below.

 New Thread

 start () stop()

 Active stop()

 Thread

 yield()

 suspend() resume()

 sleep() after ‘t’ms stop()

 wait() notify()

 Idle thread

Fig: State transaction diagram of a thread.

New born state:

This New born State builds a thread object, the new born state thread continue

built-in also continue said via continue in “new born” state. By the present case the

user could act exclusive special about the succeeding:

 Scheduling appealas long asfunctioningproving start() approach.

 Drown it proving stop()approach

start() stop()

New

Born

Dead Runnable

Unit- III

Programming in JAVA Page | 176

Runnable State:

It is the path such the thread is accessible being impalement also its staying since

the place about the processor. Runnable state thread has involved the order about

threads such continue staying since place. Wherever entire threads keep identical

arrangement, again them continue liable future spaces as long as impalement now

curved robin patterni.e.First Come First Serve (FCFS) manner.

Wherever the user need a thread into vacaterule into one more thread into

balanced preferences incemine curve appears, the user could make so by using the

yield() method.

 yield()

 ….. ……

Running Runnable

Thread threads

Running state:

This Running state refers such continue processor keep liable mine moment into

comic thread since mine result. A functioning thread can vacateminerule into

single about the ensuing directions.

i) This Running state hanging applying suspend() approach. Ahanging thread

could be returned over applying the resume() approach. suspend()

resume()

 Running Runnable Suspended

Unit- III

Programming in JAVA Page | 177

ii) Running State formed into rest, the usermaylay a thread through restsince a

detailed season duration applying the approach rest (season). Situation

season endure now milli seconds.

sleep(t)

 after ‘t’

 Running Runnable Suspended

iii) Running State advice to stay before some action happens. This is completed

applying the interval approach. The thread could be justified into bound over

applying the notify() method.

wait()

 notify()

 Running Runnable Suspended

Blocked state:

Blocked state thread is fore named into continue impededuring it continue

interrupted aganist come into the enable state and finally the functioning state. This

thread continue advised “not runnable” but not dead.

Dead state:

Every bit of thread have a life cycle. A functioning thread edgemine impulse while

it continue conclude deliminating mine run () approach. Dead state continue a

usualend. In spite of, the user may execute it overmailing the close information

into it by each state hence generate a soon end through it.

Unit- III

Programming in JAVA Page | 178

Example program using thread methods:

class X extends New Thread

{

public void run()

{

for (int i=0; i<=5; i++)

{

if(i= =0) area();

System.out.println(“New Thread X: i=”+i);

}

System.out.println(“Exit from X”);

}

}

class Y extends New Thread

{

public void run()

{

for (int j=0; j<=5; j++)

{

System.out.println(“New Thread Y: j=”+j);

if(j= =0) stop();

}

System.out.println(“Exit from Y”);

}

}

class Z extends New Thread

{

Unit- III

Programming in JAVA Page | 179

public void run ()

{

for (int k=0; k<=5; k++)

{

System.out.println(“ New Thread Z: k=”+k);

if(k= =0)

try

{

sleep(2000);

}

catch(Exception e)

{

}

}

System.out.println(“Exit from Z”);

}

}

class New ThreadTest

{

public static void main(String args[])

{

new X().start();

new Y().start();

new Z().start();

}

}

Unit- III

Programming in JAVA Page | 180

3.5.6 USING THREAD METHODS:
This Thread Method continues a group of objectsstarts in “java.lang” package. It

contributes certain various methods to act thread tasks and control thread

performance.

start(): start method is used to start a new thread

Syntax: void start()

run(): This run is the most important method in the thread. It is nature and mind

of several threads. It contains the statements that define the actual task of the

thread.

Syntax: void run()

{ }

sleep(): It is used to block the currently executing for specific time.

Syntax: void sleep(long time-in-milliseconds)

stop(): It is used to block the running thread even before completion of the task.

Syntax: void stop()

wait(): It is used to block the currently executing thread until the thread invokes

notify()method

Syntax :void wait()

suspend(): It is used to block the currently executing thread until the thread

invokes resume() method

Syntax: void suspend()

resume(): It is used to bring the thread from blocked state to runnable state which

is blocked by suspend() method.

Syntax: void resume()

yield():Whenever the user need a thread through release direction through

different thread through identical preference previous mine corner arrive, the user

need such approach.

Unit- III

Programming in JAVA Page | 181

Syntax: void yield()

setPriority(): It is used to set priority to a thread.

Syntax: void setPriority(int priority)

getPriority():this is worncontinue get the preferenceabout the thread

Syntax: int getPriority()

setName(): This isworncontinue set a name to a thread.

Syntax: void setName(String)

getName(): It is used to get the name of thread. It returns string value.

Syntax: String getName()

join(): It is used to lock a thread. No other thread can interrupt the locked thread

until its completion.

isAlive(): It returns true if the thread is alive.

3.5.7 THREAD EXCEPTIONS:
This Thread Exceptions were captured commonly by applying try and catch

blocks. For example if a try block hold sleep() method. This Thread Exception will

put an thread exception it should be captured in the catch block. The try block is

pursuing by the catch block. If the thread exception is not captured in that way the

program cannot be compiled. For example the programmers try to request a

method which the thread exception is not able to hold in the place, then the java

program executes will deliver an unauthorized Thread State Exception. The thread

exception which is in the sleep state it will be not able to deal with the resume()

method, in that it cannot accept any directions in the state.

Unit- III

Programming in JAVA Page | 182

3.5.8 THREAD PRIORITIES:
In java programming language, all threads are authorizing a preference, which

influence the sequence in which it is expected for running. For these threads of the

equal preference can division the slayer on a First Come First Serve basic (FCFS).

Java language permission to us specified the preference about a thread applying

setPriority() approach.

Syntax:

The “intNumber” it continue any decimal expense through which ever comic

thread’s preference continue specified. The Thread group of objects describes

various preference limitations.

MIN_PRIORITY =1

NORM_PRIORITY =5

MAX_PRIORITY =10

These values can consider single about the particular specifications either

various expense among 1 and 10. The defalt settings is NORM_PRIORITY.

Maximum user-stage mechanisum will need NORM_PRIORITY plus or

minus 1. At any time various threads continue to organiseds inceresult, the Java

programming language determines the maximum preference thread and executes it.

Example program: create 3 threads called A,B,C like 2nd question. After that,

class ThreadPriority

{

public static void main(String args[])

{

Xthread X = new X();

Ythread Y = new Y();

Z thread Z = new Z();

threadZ.setPriority(Thread.MAX_PRIORITY);

Unit- III

Programming in JAVA Page | 183

threadY.setPriority(threadX.getPriority()+1);

threadX.setPriority(Thread.MIN_PRIORITY);

threadX.start();

threadY.start();

threadZ.start();

}

}

3.6 Synchronization:
Javaprogramming language permitthe user to taken this problemtesting a technique

known as “synchronization”. normally, threads need their individual data and

methods arrangedinside their run() methods. still if we wish to need data and

methods outside the threads run() method, they may attempt for same effects. And

beallowedand lead to serious problems.

 In thecase thatjavaprogramming language the key word “synchronized”

supports to solve explain said issues. Through observance a watch

aboutsimilarsituation.

Example:

synchronized (object identifier)

{

………..// shared variables

…………//synchronized code

}

 In this example object identifier continue there source continue the things.

When the programmer confirm a approach as synchronized, Java programming

language build a “monitor” and handed concluded through the thread such

commands the approach begining duration. At the time that continued the thread

Unit- III

Programming in JAVA Page | 184

influence the monitor, at that time not more thread may access the

organisecategory of code.

It aboutavailable to point a sectionabout code at the time thatorganizejust as liable

down.

synchronized (object identifier)

{

………………….//access variable

………………….//code here is synchronized.

}

In this example a thread obtain done mine performance about applying

organize approach, it aim hard done with the manitor through the after thread this

is primed continue need the related capability.

3.6.1 Implementation of Runnable Interface:
By implementing Runnable interface:

Inthis interface, the user prescribes a group of objects such machine enable

attachment. The “Runnable” attachment keep particular single approach, run(),

this is to be prescribed over the group of things. It involves following steps.

 Confirm a class that appliance“Runnable” interface.

 Appliance the run () method.

 Build a thread by explain athing that is instatedaganist this “runnable“class.

 Call the threads start () approach to run the thread.

Example program to create a thread by implementing Runnable interface:

class nayan

{

public void run ()

{

Unit- III

Programming in JAVA Page | 185

for (int i=0; i<=10; i++)

{

System.out.println(“Thread nayan:”+i);

}

System.out.println(“ End of Thread nayan”);

}

}

class varshini

{

public static void main(String args[])

{

nayan runnable = new varshini();

Thread threadnayan = new Threadvarshini(runnable);

threadnayan.start();

System.out.println(“ End of main method”);

}

}

Output:

End of main method

Thread nayan: 0

Thread nayan: 1

Thread nayan: 2

Thread nayan: 3

Thread nayan: 4

Thread nayan: 5

Thread nayan: 6

Thread nayan: 7

Unit- III

Programming in JAVA Page | 186

Thread nayan: 8

Thread nayan: 9

Thread nayan: 10

End of thread X

3.7 ARRAYS:
It is a group of elements of similar data type such share a natural name. These

elements continuere served in adjacent memory situations. Through assign the

array factors the user need index or subscript. Every array initialization value starts

with zero. Such the index of end element is regularly n-1 where n is the size of

array

Syntax for declaring array:

type array_name[array size];

The nature defines the information description about element. Size illustrates

number of elements that an array can hold.

Example:

int marks [8];

float height [10];

Advantages of Arrays:

 Array act efficient about keep several elements by a future.

 Array concedes casual insinuating about elements applying evidence.

Disadvantages of Arrays:

 Extent about the array necessary be pre determining.

 Chance remains there for memory wastage.

 If the user wants through he liminate an element in the array, the user needs

through visit during the array to eliminate single element through the array.

Unit- III

Programming in JAVA Page | 187

 If the user wants through insert an element into the array, the users need to

visit throughout the array.

Arrays are different types, they are classified into:

Single dimensional Arrays (or) one dimensional array.

Multi dimensional Arrays.

3.7.1 Building an Array
For build about an Array we follow different marks. They are:

1) Declaring an Array (or) Declaration of Arrays
2) Creation memory locations
3) Putting values in to the memory locations

3.7.2 One- dimensional Array or single dimensional array:
One dimensional Array:
Anarray with only one subscript is known as single dimensional array (or) one
dimensional Array.

Declaration of Arrays:
In java programming language arrays may be declared in two ways.

Syntax:

type nameofthearray[]; (or) type[] nameofthe array;

Ex: int a[]; (or) int[] a;

Creating memory locations: After completion of declaring an Array, the user
needs through build appeal smart the memory. Java programming language uses us
through build arrays applying “new” operant.

Syntax:
Name of the array = new type [sizeofthe array];

Ex: a = new int [5];

It is also possible to combine above two steps (declaration & creation)

Unit- III

Programming in JAVA Page | 188

Syntax:

Typenameofthearray [] = newtype [sizeofthe array]

Ex: int a[]=new int[5];

Initialization of Arrays:

In the last stage is to place the values in to the array created. This process is

alsocalledas initialization. This is place accepting the array index as given below:

Syntax:

Name of the array [] = value;

Ex: a[0]=10;

a[1]=20;

a[2]=30;

a[3]=40;

a[4]=50;

we can also log in array naturally, in some use as the routine variables when

they are declared.

Syntax:

type arrayname[] = { list of values };

Ex: int a[]={35, 40, 20, 57, 19};

Wewritethearrayand print:

For (i=0;i<10;i++)

System.out.println (x[i]);

a memory

a[0]

a[1]

a[2]

10

20

30

Unit- III

Programming in JAVA Page | 189

3.7.3 Two- dimensional Arrays
Double dimensional arrays:

Double-dimensional arrays can show the instructionthrough the schemeabout rows

and columns i.e., by catching two indexes. Generally, these are used to work with

matrices.

In Javaprogramming language, a Double-dimensional array can be shownbelow:

Syntax:

Type[][] nameofthearray=new type[size][size]

Example: int x[][]=new int[3][6]; (or) int[][] x=new int[3][6];

Array initialization done as follows:

int a[][]= {{10, 20, 30}, {40, 50, 60}, {70, 80, 90}};

here,

1 2

a[0][0]=10 a[0][1]=20 a[0][2]=30 0

a[1][0]=40 a[1][1]=50 a[1][1]=60 1

a[2][0]=70 a[2][1]=80 a[2][2]=90 2

Wewritethearrayand print:

for(i=0; i<3; i++)

{

System.out.println(“ “);

for(j=0; j<3; j++)

{

System.out.print(“\t “ + a[i][j]);

}

}

10 20 30

40 50 60

Unit- III

Programming in JAVA Page | 190

3.8 STRINGS
Strings represent ordering about aspects embedded in double quotation marks (“

”). Java provides a class named “String” to handle strings. The “String” class has

several built-in functions. Though String is a class, the instantiation of the objects

need not be done using the keyword “new”. Strings could be announced and

created just as following:

String name of the string;

name of the String=new String(“string”);

The two statements may be combined as follows:

String name of the String =new String(“string”);

String program Example:

String name=new String(“nayan”);

String can also be initialized as follows

String s1=”Hyderabad”;

String objects are not mutable(self changeable)

To check out thestring length theuser follow “length()” method of String class

Ex: int n=s1.length();

String arrays:

We can also create and use arrays that contain Strings

Ex: String items[]=new String[4];

The above statement create an “item” array of size 4 to hold four String constants

Ex: String s[]={“varshini”, ”nayan”, ”manju”,”sadguna”};

Exampleprogramtofindthelengthofa string.

import java.io.*;

class String Length

{

Unit- III

Programming in JAVA Page | 191

public static void main(String args[])

{

String s1=”Java program”;

int n;

n=s1.length();

System.out.println(“Length of a String” +n);

}

}

Output:

Length of a string 12

Methods of a String:

It explains a sum about an approach such allows us through achieve a variation

about string handing works.

Method call Task to be performed

String to Lowercase() It restoration the strings, reformed within lowercase

String toUppercase() It restoration the strings, reformed within Uppercase

String replace () It restoration a string imitativeagainstsuch string

overrestorationwholesituationaboutinfirm Char

amongmodern Char.

String trim() It restoration a modelaboutsuch string includingbest and

tracking white sloteliminated, eithersuch string about it

obtain notbest or tracking white slot.

String equals () This method restoration true about and

particularaboutsuch String produce the similarflow of

characters as the described in StringBuffer, else way

false.

Unit- III

Programming in JAVA Page | 192

String equalsIgnoreCase This method approachesdual strings lexicographically,

omit case diversity.

String length() It restoration the rangeaboutsuch string.

String charAt(n) It restoration a char on the described evidence.

String compareTo() Suchapproachmeasuressuch String to one more Objects.

String concat() Suchapproachrestoration a string suchimitates the

integrationaboutsuch object's characters ensue by the

string dispute characters.

String substring() Allows substring origin from nth character

String substring () Allows substring origin from nth character to mth

character (not including mth)

String.ValueOf() This approachrestoration the string illustration.

String. Index Of() Allows the location of the first existence

Example program to demonstrate string functions:
import java.io.*;

class StringTest

{

public static void main(String args[])

{

String s1=”abc”, s2=”xyz”;

System.out.println(“Length:” +s1.length());

System.out.println(“Concatenation:” +s1.concat(s2));

System.out.println(“Uppercase:” +s1.toUpperCase());

System.out.println(“Lowercase:” +s1.toLowerCase());

System.out.println(“Substring(1,2):” +s1.substring(1,2));

System.out.println(“Replace:” +s1.replace(‘c’, ‘v’));

System.out.println(“Character at position 2:” +s1.charAt(2));

Unit- III

Programming in JAVA Page | 193

int k= s1.compareTo(s2);

if(k>0)

System.out.println(s1+ “is big”);

else if(k<0)

System.out.println(s2 + “is big”);

else

System.out.println(s1 + “and” + s2 + “are equal”);

if(s1.equals(s2))

System.out.println(s1 + “and” + s2 + “are equal”);

else

System.out.println(s1 + “and” + s2 + “are not equal”);

if(s1.equalsIgnoreCase(s2))

System.out.println(s1 + “and” + s2 + “are equal”);

else

System.out.println(s1 + “and” + s2 + “are not equal”);

}

}

Output:
Length: 3

Concatenation: abcxyz

Uppercase: ABC

Lowercase: abc

Substring(1,2): a

Replace: abv

Character at position 2: b

xyz is big

abc and xyz are not equal

abc and xyz are not equal

Unit- III

Programming in JAVA Page | 194

 StringBuffer class:

Peer class of string is also known as string buffer class.During the “String” builds

strings aboutsecure length. Itbuilds flexible length strings and such could be

converted in detailsaboutthe pair length and appeased. The user couldinclude

characters into or delete characters from a string.

 String buffer objects are mutable(self changeable)

 It can be treated as dynamic string

String buffer can be initialized as follows”

StringBuffer s1=new StringBuffer(“abcd”);

Method Task

append() Used to concatenate the string in string buffer

insert() Used to insert any string at the specified position in the given

string

reverse() Used to reverse the string present in string buffer

setCharAt() Used to set specified character in buffered string at specified

position

delCharAt() Used to delete the specified character at a given position from the

buffered string

Example:

string1.append(s2) concatenates s1 & s2 strings

string1.insert(n,s2) inserts the string s2 at nth position of s1

string1.reverse() reverses the string s1

string1.setCharAt(n,’x’) modifies the nth character to x

string1.delCharAt(n) deletes the character at nth position of s1

Unit- III

Programming in JAVA Page | 195

3.9 VECTORS
“java.util”package is involved in the vectors. It could be worn to build a wide

effective array is known as “vector” such could grip things about each from and

each count. Vectors are build like arrays as given below):

Vector list=new Vector (); // declaring without size

Vector list=new Vector (3); // declaring with size

Advantagesof Vectors:

 Vectors to reserve things.

 It could be worn to reserve anindex of things such could modify in extent.

 The user could enumerate and destroythingssuch the index as and

althoughneeded.

 The Vector class staves a number of approaches such could be worn to

manage the vectors build.

Method Task performed

Void addElement() Enumerates the describedcomposingthrough the

edgeaboutsuch vector, developingtheirextent by

single.

Void elementAt() Specified the composingthrough the

describednumberaboutsuch vector to endure the

described object.

Void size() Restoration the index of Constituent in such vector.

Void removeElement() Restoration entireconstituentagainstsuch vector and

specified its extent to zero.

Void removeElementAt() Eliminates the featurereservedareaabout the index

removeAllElements() Eliminates the factorthrough the describedreference

in such vector.

Unit- III

Programming in JAVA Page | 196

Example:

import java.util.*;

class VectorTest

{

public static void main(String args[])

{

Vector v1=new Vector(10);

v1.add(“Apple”);

v1.add(“Banana”);

v1.add(“Mango”);

v1.insertElement(“Lemon”,2);

v1.removeElementAt(3);

System.out.println(“Number of elements:” +v1.size());

System.out.println(“Vector elements:” +v1);

}

}

Output:

Number of elements: 3

Vector elements: {Apple, Banana, Lemon}

3.10 WRAPPER CLASSES

These classes can be used to convert (Integer, Long, Byte, Double, Float, Short)

are subclasses of the abstract class number.

 These classes contained in the “java.lang” package.

 The entire wrapper classes contained public final, i.e, cannot be extended.

Unit- III

Programming in JAVA Page | 197

Converting Primitive numbers to Object numbers using constructor methods,

we write:

Integer Intval=new Integer (i); // converts integer to integer object

Float Float val=new Float (f); // converts float to float object

Double Dval=new Double(d); //converts double to double object

Long Lval=new Long(l); //converts long to long object

Converting object numbers to primitive numbers using type Value () method,

we write:

int i= Intval.intValue(); // converts object to primitive integer

float f= Floatval.floatValue(); // converts object to primitive float

double d= Dval.doubleValue(); // converts object to primitive double

long L=Lval.longValue(); // converts object to primitive long

Converting numbers to Strings using to String () method:

str = Integer.toString();

str= Float.toString();

str= Double.toString();

str= Long.toString();

Converting string objects to Numeric objects using ValueOf() method, we

write:

Dval= Double.ValueOf(str);

Floatval= Float.ValueOf(str);

Intval= Integer.ValueOf(str);

Lval= Long.ValueOf(str);

Converting numeric strings to primitive numbers using parsing methods, we

write:

int i= Integer.parseInt(str);

long l=Long.parseLong(str);

Unit- III

Programming in JAVA Page | 198

3.11. Summary:
This unit has provided a detailed introduction to the Java programming language.

As Java is an object oriented language, the concept of classes is very important to

understand and this has been presented in the unit in the various sections. The

concept this unit is to provide basic insight into the core features of java

programming language. Preface to Classes, Confirming Classes, Building an

Object - Methods – Overloading methods, overloading constructors, Access

Control Specifiers, concept of Static and Abstract (Simple application based

examples).This unit also intends to illustrate key concepts through easy to

understand examples for enhancing the understanding the reader.Java is a powerful

programming language and its basics have been covered here. However, in order to

gain proficiency in the language it is important to write lots of code in the language

and practice regularly.

Unit- III

Programming in JAVA Page | 199

3.12. Exercise:
1. Write a program about object

2. Write a program about class

3. Write a simple constructor java program

4. Write a java program using overloading different number of parameters in

argument list.

5. Write a java program using overloading different in data type of parameters.

6. Write a java program using overloading sequence of data type of parameters.

7. Write a program to sum values of an array using java.

8. Write a program to find the index of an array element using java.

9. Write a program to convert an array to array list using java.

10. Write a program to find a missing number in an array using java.

Unit- III

Programming in JAVA Page | 200

3.13. Multiple Choice Questions:
1. Which of this class is superclass of every class in Java?

a) Method class b) Object class c) class d) None

Ans: B

2. Which of these can be overloaded?

a) Methods b) Constructors c) Botha& b d) None

Ans: C

3. Which of these is correct about passing an argument by call-by-value process?

a) Copy of argument is made into the formal parameter of the subroutine

b) Reference to original argument is passed to formal parameter of the subroutine

c) Copy of argument is made into the formal parameter of the subroutine and

changes made on parameters of subroutine have effect on original argument

d) Reference to original argument is passed to formal parameter of the subroutine

and changes made on parameters of subroutine have effect on original argument

Ans: A

4. What is process of defining two or more methods within same class that have

same name but different parameters declaration?

a) method overloading b) method overriding

c) method hiding d) None

Ans: A

5. Method overloading is one of the ways that Java supports …………

A) Encapsulation B) Class C) Inheritance D) Polymorphism

Ans: D

Unit- III

Programming in JAVA Page | 201

6. What is true about private constructor?

a) Private constructor ensures only one instance of a class exist at any point of

time

b) Private constructor ensures multiple instances of a class exist at any point of

time

c) Private constructor eases the instantiation of a class

d) Private constructor allows creating objects in other classes

Ans: A

7. What would be the behavior if this () and super () used in a method?

a) Runtime error b) Throws exception

c) compile time error d) Runs successfully

Ans: C

8. What is false about constructor?

a) Constructors cannot be synchronized in Java

b) Java does not provide default copy constructor

c) Constructor can be overloaded

d) “this” and “super” can be used in a constructor

Ans: C

9. What is true about Class.getInstance ()?

a) Class.getInstance calls the constructor

b) Class.getInstance is same as new operator

c) Class.getInstance needs to have matching constructor

d) Class.getInstance creates object if class does not have any constructor

Ans: D

Unit- III

Programming in JAVA Page | 202

10. What is true about constructor?

a) It can contain return type

b) It can take any number of parameters

c) It can have any non access modifiers

d) Constructor cannot throw exception

Ans: B

11. Abstract class cannot have a constructor.

a) True

b) False

Ans: B

12. What is true about protected constructor?

a) Protected constructor can be called directly

b) Protected constructor can only be called using super()

c) Protected constructor can be used outside package

d) protected constructor can be instantiated even if child is in a different package

Ans: B

13. What is not the use of “this” keyword in Java?

a) Passing itself to another method

b) Calling another constructor in constructor chaining

c) Referring to the instance variable when local variable has the same name

d) Passing itself to method of the same class

Ans: D

Unit- III

Programming in JAVA Page | 203

14. Which of these is used to access member of class before object of that class is

created?

a) public b) private c) static d) protected

Ans: C

15. Peer class of string is also known as

a) string buffer class b) Class c) Method d) None

Ans: A

16. Class is a group of ______________ that have the same properties

a) Methods b) objects c) Classes d) None

Ans: B

17. The constructor with no parameters is called as

a) Default Constructor b) Constructor c) Method d) None

Ans: A

18. The constructor with parameters is called as

a) parameterized constructor

b) Default Constructor

c) Constructor

d) None

Ans: A

19. Static variables can only declared at the

a) class level b) Method level c) Semi level d) None

Ans: A

Unit- III

Programming in JAVA Page | 204

20. Static methods can not call

a) None b) Static Methods c) Method d) Non-Static Methods

Ans: D

21. An abstract class may have both

a) Normal Method

b) abstract method only

c) abstract methods and normal methods

d) None

Ans: C

22. Normal programs contain only a single sequential flow of control these are

called

a) single-threaded programs

b) multi-threaded programs

c) Hybrid-threaded programs

d) None

Ans: A

23. Strings represent sequence of

a) Characters

b) Numbers

c) Strings

d) None

Ans: A

Unit- III

Programming in JAVA Page | 205

24. An ________________ is a group of contiguous data items that share a

common name

a) String b) Array c) Method d) None

Ans: B

25. ________________ represents a sequence of characters.

a) String b) Array c) Method d) None

Ans: A

Unit-IV

Unit- IV

Programming in JAVA Page | 207

4.0 Aims and Objectives 208
4.1 Introduction 208
4.2 Inheritance 208
4.2.1 Extending a class 209
4.2.2 Overloading methods 219
4.3 Final variables and methods 220
4.3.1 Final classes 222
4.4 Abstract methods and classes 222
4.4.1 Member access using super class 226
4.4.2 Member access using abstract classes 230
4.4.3 Call by value 230
4.4.4 Call by reference, 231
4.4.5 Overriding methods 231
4.5 Applets 234
4.5.1 Introduction 234
4.5.2 Types 234
4.5.2.1 local and remote applets 234
4.5.3 Applets and Applications 234
4.5.4 Building Applet code 234
4.6 Applet Life cycle 235
4.6.1 Initialization state 235
4.6.2 Running state 236
4.6.3 Idle or stopped state 236
4.6.4 Dead state 236
4.6.5 Display state 237
4.7 Summary 238
4.8 Exercise 239
4.9 Objective Type Questions 240

Unit- IV

Programming in JAVA Page | 208

4.0 AIMS AND OBJECTIVES:
 The aim of the unit is to cover fundamental concept of java programming

language in depth. Java is a cross platform, general purpose programming language

commonly used in critical applications such as banking systems. Objective of this

unit is to provide basic insight into the core features of java programming

language. Such as inheritance, exception handling, interfaces, abstract classes and

applet programming. This unit also intends to illustrate key concepts through easy

to understand examples for enhancing the understanding the reader.

4.1 Introduction:
The Java programming language relies heavily on the concept of Inheritance, in

which a new class can inherit or acquire the attributes and functionalities of a

previous base class which allows programmers to reuse existing code.

Java also supports applets which enables the execution of Java code on web

browsers that support this feature.

4.2 Inheritance:
In Java, it is possible for one class to acquire the properties and methods of another

class. This is referred to as inheritance. A group of objects couldisolated be

inherited against a particular class, whereas a single class can be used by multiple

classes for inheritance. The derived classes are known as subclasses as well as the

class against whichever the inheritance is done is also known as the super class. As

well as keyword which is used to achieve inheritance is the ‘extends’ keyword.

Unit- IV

Programming in JAVA Page | 209

4.2.1 Extending a Class:
Inheritance is made possible in Java through the use of ‘extends’ keyword. This

allows a new class to obtainas well assubstance and functionalities of theirs base

class.

Syntax:

Class A_subclass extends B_superclass

{

 //additional fields and methods sincecomic subclass which act not either present in

the super class

}

If the user wants to derive a subclass Son from a super class Father, you can do it

as follows:

Class Son extends Father {….}

Advantages of inheritance:

 No need to write code from scratch. You can start coding with existing class

 Through inheritance you can very easily convert small system into large

systems

 Code reusability through inheritance increased.

 Good at representing the objects

 Inheritance arrange a fairperfectarchitecture whichever is simple to

recognized

 Code is simple to maintain and split into parent and child classes.

Unit- IV

Programming in JAVA Page | 210

Properties of Inheritance:

 Irrespective of the package in which the subclass resides, all the protected

and public members are inherited by the subclass. If both the subclass and

the super class are present in the same package, private members are also

inherited by the subclass. The inherited members of a class can be either

modified or be used without any modification.

 The fields which are inherited from the super class can be used in the same

manner as any other fields of the class.

 The field inherited from super class can be overridden and hidden by

declaring a field of the same name in the subclass.

 In the subclass, additional fields can be declared that are not a part of the

parent class.

 This inheritance methods used directly as they are.

 It is possible to compose a modernexampleapproach in the subclass a

certaininclude the similarimpression as the particular in the super class. This

is referred to as overriding.

 A modernfixedapproach in the subclass this has the similar impression as the

particular in the super class may be defined. This will result in hiding of the

method in the super class.

 Modern methods in the subclass may be declared which are not in the super

class.

 A subclass constructor can be written which request as well asproducer of

the super class, this oneessentially or away proving the keyword super.

Unit- IV

Programming in JAVA Page | 211

Deriving a sub class:

In Java programming language, the programmer could assumeof a subclass of a

real class proving the ‘extends’ keyword. Here particular essential thing in java

inheritance is that a class coulddevelopindividualsingle super class.

Syntax:

class subclass_nameextendssuperclass_name

{

// Declaration of the variable

//Declaration of the method

}

Position of the class, develops the keywords.

Example:

class one

{

declarations

}

class two extends one

{

declarations

}

Types of Inheritance:

Inheritance can be classified into different types. They are

(1) Simple / Single Inheritance:

Such inheritance is when only a single subclass is derived from a super class.

Unit- IV

Programming in JAVA Page | 212

Example program of Single Inheritance

Name of the File: InheritanceTest.java

class animal

{

void eat()

{

System.out.println("eating...");

}

}

class cow extends animal

{

void moo()

{

System.out.println("moo...");

}

}

class TestInheritance{

public static void main(String args[])

{

cow d=new cow();

d.moo();

d.eat();

}

}

Unit- IV

Programming in JAVA Page | 213

Output:

moo...

eating...

In the above program, the output is produced by two statements: ‘d.moo()’ and

‘d.eat()’.

‘d.moo()’ is a call to the ‘moo()’ function that is part of the class ‘cow’ of which

the ‘d’ object is an instance of.

On the other hand, ‘d.eat()’ is a call to the ‘eat()’ function that is part of the class

‘animal’, which the ‘d’ object is not directly a part of but it derives it from base

class ‘animal’. This is an example of single inheritance.

(2) Multilevel Inheritance:

While a subclass abideimitativeagainst a class which itself has been derived from

some class, next thatstructure is called as the multilevel inheritance. Such

multilevel inheritance can have any number of levels.

Example program of Multilevel Inheritance:

Name of the File: Inheritance2Test.java

class animal

{

void eat()

{

System.out.println("eating...");

}

}

class moo extends animal{

void moo()

Unit- IV

Programming in JAVA Page | 214

{

System.out.println("moo...");

}

}

class babycow extends moo{

void weep()

{

System.out.println("weeping...");

}

}

class TestInheritance2{

public static void main(String args[])

{

babycow d=new babycow();

d.weep();

d.moo();

d.eat();

}

}

Output:

weeping...

moo...

eating...

In the above program, the output is produced by three statements: ‘d.weep()’,

‘d.moo()’ and ‘d.eat()’.

‘d.weep()’ is a call to the ‘weep()’ function that is part of the class ‘babycow’ of

which the ‘d’ object is an instance of.

Unit- IV

Programming in JAVA Page | 215

‘d.moo()’ is a call to the ‘moo()’ function that is part of the class ‘cow’, which the

‘d’ object is not directly a part of but it derives it from base class ‘eat’.

‘d.eat()’ is a call to the ‘eat()’ function that is part of the class ‘animal’, which the

‘d’ object is not directly a part of but it derives it from base class ‘animal’. The

class animal is not derived directly but is derived from the class ‘cow’. This is an

example of multiple inheritances.

3) Hierarchical inheritance:

More than one sub class is derived from a super class is also known as Hierarchical

Inheritance.

Example Program of Hierarchical Inheritance:

Inheritance3Test.java

class animal

{

void eat()

{

System.out.println("eating...");

}

}

class moo extends animal{

void moo()

{

System.out.println("moo...");

}

}

class lion extends animal{

void roar()

Unit- IV

Programming in JAVA Page | 216

{

System.out.println("roar...");

}

}

class TestInheritance3{

public static void main(String args[])

{

lion c=new lion();

c.roar();

c.eat();

//c.moo();//C.T.Error

}

}

Output:

roar...

eating...

In the above program, the output is produced by two statements: ‘c.roar()’ and

‘c.eat()’.

‘c.roar()’ is a call to the ‘roar()’ function that is part of the class ‘lion’ of which the

‘c’ object is an instance of.

On the other hand, ‘c.eat()’ is a call to the ‘eat()’ function that is part of the class

‘animal’, which the ‘c’ object is not directly a part of but it derives it from base

class ‘animal’.

The line ‘c.moo()’ produces an error as the ‘moo()’ function is part of class ‘cow’

and it is not derived by the class ‘lion’ of which the object ‘c’ is an instance of.

This is an example of hierarchical inheritance.

Unit- IV

Programming in JAVA Page | 217

4) Multiple Inheritances:

While a subclass actimitativeagainstfurther then particular super class later it is

often referred to as multiple inheritances. Java does not support multiple

inheritances. Interfaces can be used to achieve multiple inheritances in java.

5) Hybrid inheritance:

A sequence of multilevel and hierarchical inheritance is also called as hybrid

inheritance.

Example Program of Hybrid Inheritance:
Class P and Q extends class R → Hierarchical inheritance
Class S extends class X → Single inheritance

class R

{

public void disp()

{

System.out.println("R");

}

}

class X extends R

{

Unit- IV

Programming in JAVA Page | 218

public void disp()

{

System.out.println("X");

}

}

class Q extends R

{

public void disp()

{

System.out.println("Q");

}

}

class S extends X

{

public void disp()

{

System.out.println("S");

}

public static void main(String args[])

{

S obj = new S();

obj.disp();

}

}

Output:
S

Here the output produced is ‘S’ because the object is an instance of class ‘D’ and
in class ‘D’ the ‘disp()’ function is defined to print ‘D’.

Unit- IV

Programming in JAVA Page | 219

4.2.2 OVERLOADING METHODS:
Overloading is the concept of the same class having multiple functions

amongcomicsimilar name althoughvarious arguments. Which function is executed

build uponaboveact arguments supplied to function at run time.

Example Program of Overloading:

OverloadingExample.java

class AddNumbers

{

int Multiplication(int x, int y)

{

return x * y;

}

int Multiplication(int x, int y, int z)

{

return x * y * z;

}

}

class OverloadingExample

{

public static void main(String args[])

{

AddNumbers x = new AddNumbers();

int q = p.multiplication(1, 2);

System.out.println(q);

int r = p.multiplication(1, 2, 3);

System.out.println(q);

}

Unit- IV

Programming in JAVA Page | 220

}

Output:

2

6

Here the output 2 is produced by the first add function and output 6 is produced by

the second add function even though they have the same name.

4.3 FINAL VARIABLES AND METHODS:
A final variable is a variable declared with the final keyword. Whenever a variable

is declared with the final keyword, it’s value becomes fixed and cannot be updated

or changed and the variable can never be reassigned.

Similarly a final method is a function declared with final keyword. Whenever a

function or method is declared as final, it cannot be overridden in a derived class.

Final Keyword Example:

FinalKeyword.java

public class shape

{

final int shape = 3;

final void getShape()

{

System.out.println(shape);

}

void changeShape()

{

// shape = 4; Not Allowed

}

}

Unit- IV

Programming in JAVA Page | 221

public class NewShape extends shape

{

int new_shape = 6;

// void getShape() {} Not Allowed

void getNewShape()

{

System.out.println(new_shape);

}

}

class FinalKeyword

{

public static void main(String args[])

{

shape s = new shape();

s.getShape();

NewShape ns = new NewShape();

ns.getNewShape();

}

}

Output:

3

6

Here the two commented lines are not allowed as final variables cannot be

reassigned and final methods cannot be overridden.

Unit- IV

Programming in JAVA Page | 222

4.3.1 FINAL CLASSES:
A final class is one that cannot be extended by another class.

Final Class Example

FinalClass.java

final class cow

{

void moo()

{

System.out.println(“moo...”);

}

}

// public class BabyCow extends cow {} -> Not Allowed

Explanation of the program:

Here the class cow is declared final so it cannot be extended.

4.4 ABSTRACT METHODS AND CLASSES
Abstract Methods:

In fact cases where approaches acceptapart been declared and not been defined are

called abstract approaches. The keyword ‘abstract’ is worn to maintain such

approaches. The declaration of a method which is type abstract should always end

in a semi colon.

Syntax:

accessspecifier abstract return_type nameof_method(arguments);

Example:

abstract void eat();

Unit- IV

Programming in JAVA Page | 223

Abstract class:

 A class which cannot be instantiated is also known as abstract class. A class

is made abstract by using the keyword abstract after the access specified. It is not

necessary for an abstract class to have abstract methods.

Syntax:

Accessspecifier abstract class My Class

{

//Any fields

//Any methods-may or may not be abstract

}

Some key points regarding abstract methods and classes:

 A class which consist of single or multiple abstract approaches is abstract of

itself.

 Any class which is made abstract cannot be instantiated in any other class.

 Whenever a subclass of an abstract class overrides complete its abstract

approaches and provide implementation for each of those methods, then that

subclass can be instantiated. Such classes are often referred to as concrete

classes. This is done to maintain the evidenceand certain they are no more

abstract.

 All the subclasses about any abstract class are abstract themselves if they do

no morerevokeentire the abstract methods inherited from the superclass.

 The methods which can never be abstract are - static, private, and final

methods. This is due to the fact that such methods can never be overridden

in a subclass. In the same manner, it is not possible for a final class to have

abstract approaches.

Unit- IV

Programming in JAVA Page | 224

For a class to actannounced as abstract, it is no more necessary for that class to

includeseveral abstract approaches. The purpose behind confirmingsimilar a class

is to indicate that the performance is not fully complete. In such cases, a subclass is

meant to complete the implementation. Therefore abstract classes can never be

instantiated.

Example:

abstract class my_shape //Abstract Class

{

Double pi=3.14;

abstract void calculate_area(); //Abstract Method

Void display()

{

System.out,println (“\n Non_abstract method of class shape”);

}

}

class my_rectangle extends my_shape

{

Int l,b;

My_rectangle (int m, int n)

{

L=m;

B=n;

}

void area() //Implementing abstract method

{

System.out.println("\nAfter calculations (for rectangle) :");

System.out.println("Lengthis"+l);

Unit- IV

Programming in JAVA Page | 225

System.out.println("Breadthis"+b);

System.out.println("Area of the rectangle is "+(l*b));

}

}

Classmy_circle extends my_shape //sub class

{

Double r;

My_circle(double k)

{

R=k;

}

void area() //Implementation of the abstract method

{

System.out.println("\After calculations (for circle) :");

System.out.println("Radius is"+r);

System.out.println("Area is"+(pi*r*r));

}

}

/* Main class */

Classabst

{

public static void main(String args[])

{

my_shape s;

my_rectangle r=newmy_rectangle(10,5);

s=r;

s.area();

Unit- IV

Programming in JAVA Page | 226

my_circle c=newmy_circle(2.5);

c.area();

}

}

Output:

D:\java>javac abst.java

D:\java>java abst

After calculations (for rectangle):

Length is 10

Breadth is 5

After calculations (for circle):

Radius is 2.5

Area is 19.625.

Here the function ‘area()’ is a part of the base class, however it is not implemented

there. It has to be implemented accordingly in the classes where it has been

extended like rectangle and circle. Also, the class my_shape cannot be directly

instantiated.

4.4.1 MEMBER ACCESS USING SUPER CLASS:
Super keyword:

The super is a keyword defined in the java programming language. Some

important points regarding the super keyword:

 This could be used for calling a approachaboutact super class from the base

class, which has been overridden in the base class.

 This could also be worn for province the constructor of the super class.

Unit- IV

Programming in JAVA Page | 227

The syntax for calling the constructor of the super class using the keyword

‘super’:

Classsub_classextendssuper_class

{

Sub_class(args)

{

Super(agrs);

//statements;

}

}

When used as a standalone statement to call the superclass constructor the super

should be the first statement within the subclass constructor.

The syntax to call method of super class using super:

super.<method_Name>(args) ;

Whenever there is a need to call a method of superclass from the base class which

has been overridden, super keyword can be used as shown below example.

Example:

/* Use of Super*/

Class one //Super Class

{

Int a,b;

One()

{

System.out.println (“inside the constructor of class one”);

}

One (int x, int y) //Overloaded constructor

Unit- IV

Programming in JAVA Page | 228

{

system.out.println(“constructor of class one called using super”);

a=x;

b=y;

}

Void display() // Overridden method

{

System.out.println(“Inside method of class one”);

System.out.println(“a=+a);

System.out.println(“b=+b);

}

}

Class two extends one // sub class

{

Int c;

Two(int x, int y, int z)

{

Super(x,y); //Calling super class constructor

System.out.println(“Inside the constructor of class two”);

C=z;

}

Void display() //Overriden Method

{

System.out.println(“Inside method of class two”);

Super.display(); //Calling super class method

System.out.println(“c=”+c);

}

Unit- IV

Programming in JAVA Page | 229

}

/* Main class */

Classsupercall

{

Public static void main(String args[])

{

System.out.println(“Creating instance of class two\n”);

Two t=new two(10, 20, 30); //creating instance of class

Two

t.display();

}

}

Output:

D:\java>javac supercall.java

D:\java>java supercall

Creating instance of class two

Constructor of class one called using super

Inside the constructor of class two

Inside method of class two

 Inside method of class one

a=10

b=20

c=30

Unit- IV

Programming in JAVA Page | 230

4.4.2 MEMBER ACCESS USING ABSTRACT CLASSES:
The member of abstract class cannot be directly accessed as the class cannot be

directly instantiated. It has to access through a class that extends it.

4.4.3 CALL BY VALUE:
Java is always call by value and never call by reference. In the case of primitive

data type such as int, the actual value of the variable is passed whereas in case of

objects the value of the reference to the object is passed.

In case of call by value, a new copy of the variable is created and that is passed to

the function. Any change to the variable inside the function does not reflect to the

original variable that was passed.

Example:

Following example illustrates passing of value of primitive data type variable to a

method.

class MyClass

{

Int y=500;

Void changeValue(int y)

{

Y=y+100; only the value of the local variable is changed

}

Public static void main (String args[])

{

MyClassobj=newMyClass();

system.out.println(“Before changing the value:”+obj.y);

obj.changevalue(500);

Unit- IV

Programming in JAVA Page | 231

system.out.println(“After changing the value:”+obj.y);

}

}

Output:

Before changing the value: 500

After changing the value: 500

4.4.4 CALL BY REFERENCE:
In case of call by reference, a new copy of the variable is not created and the same

variable is passed to the function. Any change to the variable inside the function

will reflect on the original variable that was passed.

In Java, in case of objects the value of the reference to the object is passed.

4.4.5 OVERRIDING METHOD:

 If a approachusual a subclass includeact similar name

alsoformimpressionjust as a approachusualtheirs superclass,

againactapproachusualact subclass doforenamed to

revokeactapproachusualact superclass.

 If a approach which has been overridden is called from the subclass, then the

version of the method which has been newly defined will called.

 The implementation details about the approachdescribedover the superclass

will be of no use in subclass as it will be hidden, if that method has been

overridden by the superclass.

 For overriding a method, the name as well as the type signatures should

match. Whereverit is do not match, again the doubleapproaches will be

overloaded.

Unit- IV

Programming in JAVA Page | 232

Example:

/* Method overriding example */

class one //Super class

{

void calculate(intx,int y)

{

System.out.println("Class one");

System.out.println("X="+x+"\nY="+y+"\nX+Y="+(x+y));

}

}

class two extends one //sub class

{

void calculate(intx,int y) //Overrided method

{

System.out.println("Class two overrided method");

System.out.println("X="+x+"\nY="+y+"\nX*Y="+(x*y));

}

void calculate(float x,float y) //Overloaded method

{

System.out.println("Class two overloaded method");

System.out.println("X="+x+"\nY="+y+"\nX*Y="+(x*y));

}

}

/* Main Class */

class override

Unit- IV

Programming in JAVA Page | 233

{

public static void main(String args[])

{

two t=new two(); //Creating object of class two

t.calculate(6,7);

t.calculate(2.5f,3.2f);

one o=new one(); //Creating object of class one

o.calculate(6,7);

}

}

Output:

D:\Java>javac override.java

D:\Java>java override
Class two overrided method
X=6
Y=7
X*Y=42
Class two overloaded method
X=2.5
Y=3.2
X*Y=8.0
Class one
X=6
Y=7
X+Y=13

 In the above example the calculate (int, int) method of the class one has been
overidded by the class two. So in order to access the calculate method of class one
we need to create an object for the class one.

 If you wish to access the super class version of an overridden method from
within the subclass, you can do so by using super Keyword.

Unit- IV

Programming in JAVA Page | 234

4.5 APPLETS

4.5.1 INTRODUCTION
An applet is a web-based program written in Java. An applet is most often

embedded in a HTML page. This HTML page is then viewed in a browser (For

example: Chrome, Firefox). An applet can be downloaded by any computer.

4.5.2 TYPES OF APPLETS:
Local applet:

When an applet is stored locally in our system, it is referred to as a local applet.

Such an applet can be viewed in the browser even without accessing the internet.

Remote applet:

An applet which has been stored in a remote server and is accessed through an

internet connection is referred to as a remote applet.

4.5.3 Applets and Applications:
The following are the situations to use applets.

 To obtain dynamic changes from web page.

 To provide GUI for remote user.

 To make the programs available through the internet.

4.5.4 Building an applet code:
public class AppletSkel extends Applet

{

public void init()

{

}

Unit- IV

Programming in JAVA Page | 235

public void start()

{

}

public void stop()

{

}

public void destroy()

{

}

public void paint(Graphics g)

{

}

}

4.6 Applet life cycle:
The applet lifecycle includes the following methods:

4.6.1 Initiation State:
init(): This method is used for the purpose of the initialization of an applet

Lifecycle of an applet begins when the init() method is called and the browser

finishes loading all the applet’s classes. Therefore, inside the init() method the

variables should be initialized. After the process of initialization is finished, the

browser automatically calls the start() method. After this method is called the user

is able to interact with the applet.

Unit- IV

Programming in JAVA Page | 236

4.6.2 Running State:
start():This method is called after the initialization method has been called.In case

the user again maximizes the window or moves back to the applet after browsing

other WebPages, the browser automatically calls the applet’s start() method.

Hence, the user can again start interacting with applet.

4.6.3 Idle or stopped state:
stop():In order to stop the applet, this method is used. It can be called any number

of times in the whole lifecycle of an applet.

The stop() method is called by the browser whenever the window is minimized or

the user starts browsing some other web page. This is very useful as it ensures that

the applet does not consume any extra resources while the user is not using it.

destroy():This method is automatically called when we close the applet. It can only

be called once during the whole lifecycle of the applet.

It is necessary to kill the applet before it closes to ensure that no system resources

are being consumed after the applet has been closed. The method which is uses to

do so is the destroy () method.

4.6.4 Dead State:
An applet enters the dead state when it is removed from the memory. This is done

by overriding the destroy() method. stop() must always be destroyed before

destroy().

Unit- IV

Programming in JAVA Page | 237

4.6.5 Display State:
It is possible to override any of the applet’s lifecycle methods. This can be done to

include your own custom implementation of these methods. For example, stop ()

method can be used to clean up some used space.

There may be cases when there is a need to clean up some threads which were

started during the initialization of the applet. This can be done by overriding the

destroy () method.

Difference between Applets and Applications:
Even though both stand-alone applications as well as applets are java programs,

they differ in many ways. Some key differences are discussed below:

 Unlike stand-alone applications, applets do not use the main() method.

Certain methods such as init(), start() and destroy() are automatically called

during the lifecycle of an applet.

 Applets are executed in a browser(For example : Firefox, Chrome) and are

embedded inside an HTML page. This is not the case with stand-alone

applications.

 In order to be secure, applets have some restrictions imposed on them.

Applets are not allowed to access the files which are present locally on the

user’s computer.

Unit- IV

Programming in JAVA Page | 238

 Applets are not allowed to communicate in any manner with other servers

present in the network.

 Applets are restricted to run any programs on the local system.

 Applets are not allowed to use any library which is written in other

languages.

The restrictions imposed on applets ensure security and prevents any malicious

applet code from doing any harm.

4.7 Summary:
This unit has provided a detailed introduction to the Java programming language.

As Java is an object oriented language, the concept of classes is very important to

understand and this has been presented in the unit in the various sections. The

concept of inheritance is used extensively in Java and different types of inheritance

have been explained like multiple, single, multilevel, hierarchical and hybrid

inheritance. Use of final keyword, abstract methods and classes is also explained.

Applets are a way to run Java on browsers that support it. It’s usage along with the

lifecycle has been presented.

Java is a powerful programming language and it’s basics have been covered here.

However, in order to gain proficiency in the language it is important to write lots

of code in the language and practice regularly.

Unit- IV

Programming in JAVA Page | 239

4.8 EXERCISE:
Q.1 What is inheritance?

Q.2 What is the difference between overriding and overloading?

Q.3 What are applets?

Q.4 Explain the applet life cycle.

Q.5 What is the difference between call by value and call by reference?

Q.6 What are abstract classes?

Q.7 Explain the use of final keyword with respect to classes, variables and

functions respectively.

Q.8 How does Java handle inheritance?

Q.9 What are the different types of inheritance in Java?

Unit- IV

Programming in JAVA Page | 240

Multiple Choice Questions:
1. How many abstract classes can a single program contain?

a) At most 1 b) At least 1 c) At most 127 d) As many as required

Ans: D

2. Which of the following statements is valid about abstract classes?

a) If a class has more than one virtual function, it’s abstract class

b) If a class have only one pure virtual function, it’s abstract class

c) If a class has at least one pure virtual function, it’s abstract class

d) If a class has all the pure virtual functions only, then it’s abstract class

Ans: C

3. Can abstract class have main() function defined inside it?

a) Yes, depending on return type of main() b) Yes, always

c) No, main must not be defined inside abstract class

d) No, because main() is not abstract function

Ans: B

4. If a class contains an abstract class, then, ________________

a) Class must be abstract class b) Class may or may not be abstract class

c) Class is generic d) Class must be public

Ans: A

5. If a class is extending/inheriting any other abstract class having abstract

method, then ________________

a) Either implementation of method or making class abstract is mandatory

b) Implementation of the method in derived class is mandatory

c) Making the derived class also abstract is mandatory

d) It’s not mandatory to implement the abstract method of parent class

Ans: A

Unit- IV

Programming in JAVA Page | 241

6. Abstract class A has 4 virtual functions. Abstract class B defines only 2 of

those member functions as it extends class A. Class C extends class B and

implements the other two member functions of class A. Choose the correct

option below.

a) Program won’t run as all the methods are not defined by B

b) Program won’t run as C is not inheriting A directly

c) Program won’t run as multiple inheritance is used

d) Program runs correctly

Ans: D

7. Abstract classes can ____________________ instances.

a) Never have b) Always have c) Have array of d) Have pointer of

Ans: A

8. We ___________________ to an abstract class.

a) Can create pointers b) Can create references

c) Can create pointers or references

d) Can’t create any reference, pointer or instance

Ans: C

9. Which among the following is an essential use of abstract classes?

a) Header files b) Class Libraries c) Class definitions d) Class

inheritance

Ans: B

10. Use of pointers or reference to an abstract class gives rise to which among

the following feature?

a) Static Polymorphism b) Run time polymorphism

c) Compile time Polymorphism

d) Polymorphism within methods

Ans: B

Unit- IV

Programming in JAVA Page | 242

11. The abstract classes in java can _________________

a) Implement constructors b) Can’t implement constructor

c) Can implement only unimplemented methods

d) Can’t implement any type of constructor

Ans: A

12. Abstract class can’t be final in java.

a) True

b) False

Ans: A

13. Can abstract classes contain static methods (Java)?

a) Yes, always b) Yes, but depends on code

c) No, never d) No, static members can’t have different values

Ans: A

14. It is _________________________ to have an abstract method.

a) Not mandatory for an static class b) Not mandatory for a derived class

c) Not mandatory for an abstract class d) Not mandatory for parent class

Ans: C

15. The derived classes are known as

a) Sub classs b) Super class c) Multi class d)None

Ans: A

16. The class from which the inheritance is done is called the

a) Sub classs b) Super class c) Multi class d)None

Ans: B

17. The keyword which is used to achieve inheritance is the____________

keyword.

a) ‘extends’ b) *extend* c) extend d)None

Ans: A

Unit- IV

Programming in JAVA Page | 243

18. The protected and public members are inherited by the

a) Super Class b) Subclass c) Multi Class d) None

Ans: B

19. java inheritance is that a class can extend only
a) one super class b) Two super classes c) Both d) None

Ans: A

20. Inheritance can be classified into
a) 06 b) 05 c) 04 d) 01

Ans: B

21. When a subclass is derived from a class which itself has been derived from

some class, then this mechanism is known as the

a) Multilevel Inheritance b) Single Inheritance

c) Both d) None

Ans: A

22. ______________Inheritance more than one sub class is derived from a super

class.

a) Multilevel Inheritance b) Single Inheritance

c) Hierarchical d) None

Ans: C

23. When a subclass is derived from more than one super class then it is often

referred to as

a) Multiple Inheritance b) Single Inheritance

c) Hierarchical d) None

Ans: A

Unit- IV

Programming in JAVA Page | 244

24. Java does not support

a) Multiple Inheritance b) Single Inheritance

c) Hierarchical d) None

Ans: A

25. A combination of multilevel and hierarchical inheritance is known as

a) Multiple Inheritance b) Single Inheritance

c) Hierarchical d) Hybrid

Ans: D

26. A ____________ is a variable declared with the final keyword

a) Final Variable b) Variable

c) Fast Variable d) None

Ans: A

27. A_______________ is one that cannot be extended by another class

a) Variable b) Final Class c) Fast Variable d) None

Ans: B

28. A class which cannot be instantiated is called an

a) abstract class b) Final Class c) Fast Variable d) None

Ans: A

29. An applet is a_____________ written in Java

a) abstract class b) web-based program c) Fast Variable d) None

Ans: B

30. Types of Applets

a) 02 b) 04 c) 05 d) 06

Ans: A

Unit-V

Unit- V

Programming in JAVA Page | 246

5.0 Aims and Objectives 248

5.1 Introduction 248

5.2 Packages 248

5.2.1 Introduction to Packages 248

5.2.2 Defining a package 249

5.2.3 Creation of Package 251

5.2.4 User defined package 252

5.2.5 Java API Packages 254

5.2.6 Using System Packages 255

5.2.7 Naming conventions 256

5.2.8 Accessing a Package 257

5.2.9 Using a Package 258

5.3 Interfaces 260

5.3.1 Introduction 260

5.3.2 Defining interfaces 260

5.3.3 Extending interfaces 261

5.3.4 Implementing interfaces 262

5.3.5 Assessing interface variables 264

5.3.6 Multiple inheritance 267

5.4 Managing Errors and Exceptions 269

5.4.1 Types of errors 269

a) Compile-time errors 269

b) Run-time errors 271

Unit- V

Programming in JAVA Page | 247

5.5 Exceptions 273

5.5.1 Exception handling 278

5.5.2 Multiple Catch Statements 287

5.5.3 Using finally statement 289

5.6 Managing input/output files in java 291

5.6.1 Introduction 291

5.6.2 Reading and writing files 291

5.7 Concept of Streams 292

5.7.1 Stream classes 293

5.7.2 Byte Stream Classes 293

5.7.3 Input Stream Classes 293

5.7.4 Output Stream Classes 294

5.8 Character Stream classes 294

5.8.1 Reader and Writer stream classes 295

5.8.2 Streams in Java 296

5.9 Summary 296

5.10 Exercise 298

5.11 Objective Type Questions 299

Unit- V

Programming in JAVA Page | 248

5.0 AIMS AND OBJECTIVE
Aims:

 The aim of the unit is to cover fundamental concept of java Packages,

Interfaces and Exceptional handling in depth.Java is a cross platform, general

purpose programming language commonly used in critical applications such as

banking systems. Objective of this unit is to provide basic insight into the core

features of java programming language. Such as Packages, interfaces and

exception handling. This unit also intends to illustrate key concepts through easy to

understand examples for enhancing the understanding the reader.

5.1 INTRODUCTION
A Package consists of collecting of classes and interfaces. The users can use the

methods of those classes and interfaces as and when needed. It provides

reusability.

5.2 PACKAGES

5.2.1 INTRODUCTION TO PACKAGES:
Package refers to a group of classes and related types. It essentially provides access

protection and name space management.

Often related types are grouped together in various packages. This has a number of

advantages. It makes the types much sample to asset and worn. It also helps to

escape the case of clash in names and makes it easier to control and manage access.

It assists to regulatethe classes into a folder shape and make it simple to spot and

use them. It also helps to improve re-usability.

Unit- V

Programming in JAVA Page | 249

Building a Package:

Steps to build a Java package:

 Select the package name

 Pick up a base directory

 Make a subdirectory from the base directory that matches your package

name.

 Place your source files into the package subdirectory.

 Use the package statement in each source file.

 Compile your source files from the base directory.

 Run your program from the base directory.

Example of a package:

Package package1;

Class Nayan

{

}

5.2.2 DEFINING A PACKAGE:
Each and every class is a part of a certain package.

Every class in a file is a part of a single specific package.

A single package may comprise of multiple files.

In case when no particular package is specified, then by default the classes in that

particular file go into a special unnamed package. (Same unnamed package for all

files).

It is possible to access public classes which are present in some other package by

importing them:

import package_name.nameof_class;

Unit- V

Programming in JAVA Page | 250

It is also possible to access the public fields and methods of such classes by using:

import package_name.nameof_class.methodorfield_name;

If you don’t want to specify any package, following should be used.:

import nameof_package.*;

Syntax of Package:

Package <package_name>;

A few of the extant packages in Java programming language are

java.lang – It comprises of all the elemental classes

java.io – Many classes specific to input and output are contained in this package.

Naming a Package:

Names for packages are always given lower case. This helps in avoiding conflict of

similar names.

In Java, packages must always start with java. Or javax.

Example Program of a Package:

//Program Name as Package.java

package package1;

public class BSC

{

public static void main(String args[])

{

System.out.println("congrats to BSC MPCS Freshers");

}

}

Unit- V

Programming in JAVA Page | 251

5.2.3 CREATION OF PACKAGE:
Steps to create a Java package:
Select the package name

Pick up a base directory

Make a subdirectory from the base directory that matches your package name.

Place your source files into the package subdirectory.

Use the package statement in each source file.

Compile your source files from the base directory.

Run your program from the base directory.

Example of Package Program:
package package1;

class manju

{

}

In the above example, we have created a package with the name “package1”, in
which a class is created.

Example of Package Program:
Package nayanpack1;

Import java.io.*;

Public class faculty

{

Public static viod main (String args[])

{

System.out.println(“congrats to new faculty”);

}

}

In the above program, we have created a package with the name “nayanpack1”, in
which a class is created as faculty.

Unit- V

Programming in JAVA Page | 252

5.2.4 User Defined Package:
It is a group of objects created in a unique list. Creation of our own package (User

defined package) consist the ensuing steps.

 conform the package at the starting of a file proving the form:

Package packagename;

 Describe the class this is to continuebring in the package and confirm it as

public.

package packagename; package declaration

public class classname class definition

{

…………..

}

 Build a subdirectory supporting the listpoint the majorsource files are saved.

 Save the file (classname.java) in the main directory (bin).

 Edit the file, this builds “.class file”. Remember that the “.class file” must be

located in a list that has the name similarly as the package name.

Example Program of Package:

package arithmetic;

public class Addition

{

public void add(int p, int q)

{

System.out.println(“Addition=”+(p+q));

}

}

 Save this file as “Addition.java”.

 Compilation: javac-d. Addition.java

Unit- V

Programming in JAVA Page | 253

This statement will generates a directory named with “arithmetic” in the current

directory (bin) and “.class” file is stored in “arithmetic” directory.

Accessing a package:

Packages can be accessed by using import keyword.

Syntax:

import packagename.classname;

(or)

import packagename.*;

Using a package:

import arithmetic.Addition;

class AddUse

{

public static void main(String args[])

{

Addition a= new Addition();

a.add(10, 20);

}

}

Using Package Members:

Importing a Package Member:

In Java it is possible to import a single member of a package instead of importing

the whole file. This can be done by using the import statement before any type

definitions. The example below shows how the member rectangle can be imported

from the graphics package.

import graphics.Rectangle;

Now it is possible to use the member anywhere in the class like below:

Rectangle my_Rect = new Rectangle();

Unit- V

Programming in JAVA Page | 254

Illustrating an Entire Package:

In order to implication all the contents of a package, we can use the implication

statement and the package name followed by an asterisk character(*).

import graphics.*;

import java.awt.*;

5.2.5 JAVA API PACKAGES:
Java Application Programming Interface (API) provides a hugecount of classes

arrangedwithin theparticular packages giving to its functionality.

Package name Contents

java.lang It contains Language support classes. The Java compiler

automatically uses this java.lang package. It includes classes

for primitive data types, strings, stringBuffer, stringBuilde,

math functions, threads and exceptions etc.

java.util It contains the Language utility classes such as vectors, hash

tables, date, StringTokenizer etc.

java.io It contains the classes support Input and Output classes.

Unit- V

Programming in JAVA Page | 255

java.awt It contains Set of classes for implementing Graphical User

Interface (GUI).

java.net It contains Classes for networking.

java.applet It contains the Classes for creating the applets and

implementing applets.

5.2.6 USING SYSTEM PACKAGES:
Using system packages:

The packages in Java are organized in a hierarchical structure. Below figure shows

that the package named “java” contains the package “awt” which inturn contains

various classes requires for implementing GUI.

In many situations, the user can same to use many of the classes involved in a

package. We achieve this easily as follows:

import packagename.classname;

 (or)

import packagename.*;

The first statement allows the specified class in the specified package to be

imported by using import keyword.

Unit- V

Programming in JAVA Page | 256

Example:

import java.awt.Color;

The second statement imports every class contained in the specified package.

Example:

import java.awt.*;

5.2.7 NAMING CONVENTIONS:
Naming conventions (or) Naming rules:

Package could be named applying Java common naming rules.

In this Packages starts with lowercase alphabets

And all class names begin with uppercase letter.

All methods begin with lowercase letters.

Example:

Unit- V

Programming in JAVA Page | 257

5.2.8 ACCESSING A PACKAGE:
In this section the following program given the example

Example:

Package varshini;

Class nayan

{

Public void sadguna()

{

System.out.println(“sadguna of nayan”);

}

Public static void main (String args[])

{

Nayan obj=new nayan1();

Obj.sadguna();

}

}

Program explanation:

In this above program first create class name varshini with method name sadguna

and create main method than create an object as nayan1 and main method as

sadguna now let’s say I want put this class in to the package name as varshini and

the file name save as Manju.java, lets compile the file javac compilation done file

name as nayan.java class file is created but we have to create package with this use

command javac –d . Manju.java this command for force is compiler to create a

package here . (dot) operator means the working directory if you check up the

folder package name Manju created which as class nayan if you want to compile

the file with double .. (Double dots) the package will be created in the main

directory which is the main drive like as C:\>. Let’s say the user want to create a

Unit- V

Programming in JAVA Page | 258

sub package modify the statement as Manju dot Manju khari compile the file in the

manju folder another folder Manju khari is created with class nayan to execute the

code mention the perfectly examined name of the class that is package name and

sub package name followed by the class name.

5.2.9 USING A PACKAGE:
In Java programming language, single program conveysindividualsingle public

class. The User cannot put two or more public classes together in “.java” file. If we

want to create a package with multiple public classes in it, we may follow the

following steps.

 Decide the name of the package.

 Create a sub-directory with this package name under the main directory.

 Create classes that are to be placed in the package.

 Compile each source file.

Example:

 Build a list by name “arithmetic” and change to that list.

 Build the coming file (subtraction.java) and edit the file in the same list.

package arithmetic;

public class subtraction

{

public void subtraction(int p, int q)

{

System.out.println (“subtraction=”-(p-q));

}

}

Create the second file (multiplication.java) and edit the information in the similarly

directory.

Unit- V

Programming in JAVA Page | 259

package arithmetic;

public class multiplication

{

public void multiplication(int p, int q)

{

System.out.println (“multiplication=”*(x*y));

}

}

Using of package:

At this time the userchange to the parent (bin) list, create the coming program

(nayan.java) and complete it.

import arithmetic.*;

class Annapoorna

{

public static void main(String args[])

{

Addition a1= new Addition();

a1.add(10, 20);

Subtraction s1= new Subtraction();

s1.sub(20, 10);

}

}

Unit- V

Programming in JAVA Page | 260

Naming a Package:

 In the naming packages the name of the package were drafted in all lower
case letters to escape clash with the names of the classes or interfaces.

 Packages in the java programming language starts with java. Or javax

Using Package Members:

Comprise a package is also known as Package members.

5.3 INTERFACE:
5.3.1 INTRODUCTION:

In Java, interfaces are abstract in nature and are used to achieve polymorphism.

The keyword interface is used for the declaration of interface. An interface in Java
can only have method signature and constant declarations. An interface may also
have variables, but only static and final variables are allowed.

Method definitions are not allowed in an interface.

Using interfaces is like creating contracts. The contract specifies what is
compulsory for the class to do, but not how it will do that.

5.3.2 DEFINING INTERFACES:

It is essentially a gentle of class. Here classes and interfaces consist of variables as
well asmethods witha extensivechange. The change is that an interface illustrates
only final fields and abstract methods. Then it is the authority of the class that
performance an interface to illustrates the code for performance of these methods.

 In an interface all methods are implicitly public.

 In an interface all variables are static and final.

 A class can implement many interfaces.

 Interface can be extended.

 It is not possible to create an object to an interface directly, but we can
create reference variables.

Unit- V

Programming in JAVA Page | 261

Interfaces are defined following syntax:

interface InterfaceName

{

Variable declarations;

Method declarations;

}

Presenthere interface is the keyword and name of the Interfaceis any identified

variable (like as class name)

Example of the Interface:

interface employer

{

final int employee id=101;

int move();

}

5.3.3 EXTENDING INTERFACES:
Extending Interfaces:

In Java Extending Interfaces once the interface can obtain one more by help of

another keyword develop.The syntax is same as for inheriting classes.

Although a class develops a combination that inherits to one more combination.

Syntax of the Extending Interface:

Interface manju2 extends manju1

{

Body of manju2;

Unit- V

Programming in JAVA Page | 262

Example of Extending Interface

Interface employee

{

Int Employee id=001;

String name=”nayan”;

}

Interface software extends employee

{

Void display();

}

5.3.4 IMPLEMENTING INTERFACES:
Implementation of Interfaces:

The implementation of interfaces are used as “super classes”, these interfaces are

chosethe equalityand inherited by the classes. The syntax of the implementation

interfaces like as:

class classname implements interfacename

{

Body of class;

}

Example program for implementing an Interface:

Name of the Program:person.java

Public class person implements employee

{

Unit- V

Programming in JAVA Page | 263

publicvoidemployee id()

{

System.out.println("employee id");

}

publicvoidname of the employee()

{

System.out.println("name of the employee");

}

publicintsalary()

{

returnsalary;

}

publicstaticvoid main(String args[])

{

Employeeemp=newemp1();

emp.employee id();

emp.employee name();

emp.employee salary();

}

}

Output of the program:

Employee id

Employee name

Employee salary

Unit- V

Programming in JAVA Page | 264

5.3.5 ACCESSING INTERFACE WITH VARIABLES:
The program is an example for accessing interface variables. It also illustrates how

interfaces can be used to simulate multiple inheritances. The program contains an

interface named “Allowance” and classes named “Employee” and “Salary”.

Example Program:

Interface Allowance

{

class

int da=2000;

int hra=3000;

}

class Employee

{

private int empno;

private String name;

public void getData(int eno, String n)

{

empno= eno;

name= n;

}

public void show()

{

System.out.println(“Employee number:” +empno);

System.out.println(“Employee name:” +name);

}

}

class Salary extends Employee implements Allowance

Unit- V

Programming in JAVA Page | 265

{

private double sal;

public void getData(int eno, String n, double s)

{

super.getData(eno, n);

sal= s;

}

public void total()

{

super.show();

System.out.println(“Total salary:” +(sal+da+hra));

}

}

class Test

{

public static void main(String args[])

{

Salary e1= new Salary();

e1.getData(1001,”sadguna”,50000);

e1.total();

}

}

Output of the Program:

Employee number: 1001

Employee name: sadguna

Total salary: 55000

Unit- V

Programming in JAVA Page | 266

Example Program:

interface A

{

/* internally public static final int x=10;*/

int x=10;

/* convert internally to public abstract void show() */

void show();

}

interface B extends A

{

/* public abstract void disp(); */

void disp();

}

Example Program:

Interface for Multiple Inheritance

interface Animal

{

void sleep();

void eat();

}

interface Pet

{

void faithful();

}

class Dog implements Animal, Pet

{

public void sleep(){}

Unit- V

Programming in JAVA Page | 267

public void eat(){}

public void faithful(){}

}

5.3.6 MULTIPILE INHERITANCE:
The java programming language does not allow multiple inheritance. This has been

done to avoid cases of ambiguity. One such popular case is of the diamond

problem.

Diamond problem:

The below diagram depicts the diamond problem. In the diagram, the class A

extends both the class B&C. The problem arises when the class B& C both

override some method of class A in it’s own ways. This is where ambiguity arises.

Class D can inherit any of the methods, either form class B or Class C. Therefore,

to remove such ambiguity Java does not allow any multiple inheritance.

Achieving Multiple Inheritance In Java Using Interfaces

Interface P

{

public void Method();

}

Interface Q

{

Unit- V

Programming in JAVA Page | 268

public void Method();

}

class Demo implements P, Q

{

public void Method()

{

System.out.println (" Multiple inheritance example using interfaces");

}

}

In the above program a single class implements two interfaces. Even though

multiple interfaces are used, no ambiguity arises. This is due to the fact that java

interfaces are always abstract and hence they contain no implantation of their own.

Thus, even though the two interfaces had methods of same names, no ambiguity

arises.

Interface Features:

 It denotes the object’s functionality without giving out the actual

implementation.

 With help of interfaces, encapsulation can be implemented.

 The implementation can be varied without affecting the caller of the

interface.

 There is no requirement for the implementation at the compile time.

 Object instance is associated with the interface throughout the execution

time of the program.

Example of Interface:

interface A

{

/* internally public static final int x=10;*/

Unit- V

Programming in JAVA Page | 269

int x=10;

/* convert internally to public abstract void show() */

void show();

}

interface B extends A

{

/* public abstract void disp(); */

void disp();

}

5.4 MANAGING ERRORS AND EXCEPTIONS:
In java programming lanaguage when we get the errors in compilation then the

program is wrong. In sytem it is called as “bugs” (errors).While writing the

program the errors are common like as logical errors or syntax errors or runtime

errors . when we get the errors the error causes which type of error that is.

 Anyfaultycancomes an false output or caneliminate the program output of

the program unexpectedly (in center) or directcansource the system to clash.

Therefore it is essential to identify and maintainperfectly all the available errors.

5.4.1 TYPES OF ERRORS:
Compile-Time Errors:

In java programming langauge while executing the the programs the syntax errors

will be identified and visible by the java compiler and therefore these errors are

known as compile time errors. Whenever the compile visibless an error, it will not

creat the “.class” file

Unit- V

Programming in JAVA Page | 270

Example of the Compile – Time Error:

class Error1

{

public static void main(String args[])

{

System.out.println(“ Hello java”) //missing

}

}

The Java compiler does a nice job of telling us where the errors are in the program.

For example, in the above program, we have missed semicolon, the following

message will be displayed.

Error1.java:6: ‘;’ expected

System.out.println (“Hello java”)

^

1 error

The user goes withrelevant line, modify the error and run the program again. In

compile – time errors most of the things in typing mistakes. Most of the users do

the common errors are:

 Not entered semicolons

 Not entered Missing brackets in classes and methods

 Misspelling of identifiers and keywords

 Double quotes not return in strings

 Use of undeclared variables

 Use of = in place of = = operator and so on.

Unit- V

Programming in JAVA Page | 271

Run-time errors:

Runtime errors:

In Run time errors after compilation of the program it gives the no errors but the

program not gives the result. In run time errors programs may giveserror results

expected to mistaken logic or may concludeexpected to errors. In runtime errors

some of the mostly errors are:

 Split an integer by zero.

 Approaching a factor that is away of constrained of an array.

 Demanding to cache a assessment into an array of an conflicting type.

 Attacking to help a unfavourableextent for an array.

 Approaching anaspect that is away of obligates of a string.

 Modifyingfalse string to a figure and so on.

Example of Run time Errors:

class nayan

{

public static void main(String args[])

{

int p=5;

int q=4;

int r=4;

int s=p/(q-r); //analysis by zero

System.out.println(“s=”+s);

int t= p/(q+r);

System.out.println(“t=”+t);

}

}

Unit- V

Programming in JAVA Page | 272

In the program fantastically right and accordingly achieve no more element any

dispute over as sortment. Although, during the execution, it acts the ensuring

information and pauses beyond finishing another statements.

Exception:

In this exception is an atypicalact that appearsover the result of the program and

confuse the routineprocess of the program. Irregularity doesariseduring your

program is executing. For example, the userscapabilities await the programmer to

access an integer, althoughaccept a content string; or an unanticipated Input/output

error pops up at runtime. Java has animplicitsystem for approachingin time errors,

assigned to as exception handling. Exception is to assure that you can

createpowerful programs for mission-critical applications.

Exception Handling

 In java programming language, while each cor dial of a typical surroundings

arise with in a approach then the exclusions are launched in mode of exclusion

thing that is the routine program authority outflow is interrupted and an exclusions

things is build to hold that unique status.

 In Exception Handling the approach builds athing and palms it done to the in

timerule. Essentially, complete the data around the error or any amazing situation

is gathered in this group of things in the scheme of a stack. This object build is also

known an exception object the action is described as delivering exclusion.

 The structure of approaching an exclusion is also known as catching an

exclusion or approaching an Exception or commonly Exception handling.

Unit- V

Programming in JAVA Page | 273

Advantages of Exception-handling in Java:

In java programming language exception brings the measures to isolate the

particulars of that while act while being away of the normal appears from the

specialsense of a program.

One of the implications of this system is that it delivers exclusion on any occasion

a occupation approach concurrence an fault given that the calling approach returns

responsibility of that error.

Among the comfort of the present system the functioning code and the error-

handling code could be descend. It again allows us the capacity of establish and

separate between various error types proving an isolated section of codes. This is

affected along the assist of try-catch blocks.

As well the errors could be increased up the approach call stack that is issues

existing at the reduced stage in the group could be organized by the approached

increased up the call group.

5.5 EXCEPTIONS:
When the normal execution of a program is disturbed due to some abnormal event,

an exception is said to be thrown. This can happen due to a number of reasons

while the program is running. For example, if an integer is divided by zero the

arithmetic exception is thrown. To handle such cases in an efficient manner, Java

has a mechanism called exception handling. This makes sure that programmers are

able to write robust programs which can be used in critical applications.

Types of Exceptions:

In the Exceptions there are 3 different types. They are following like this:

 Checked Exceptions

 Unchecked Exceptions

 Error

Unit- V

Programming in JAVA Page | 274

Checked Exceptions:

The Checked Exceptions which are encountered by the compiler are referred to as

checked exceptions. The compiler looks for the proper exception handling in the

program. The exceptions must have been considered by the programmer and

handled appropriately. Doing so will not result in compile time errors?

All the exceptions extend the java.lang. Exception class. The cases of exception

should be predicted by the programmer. Any possible checked exceptions which

might occur are needed to be caught.

Such as, where ever the readLine () method is called at a Buffered Reader object

again the IO Exception might exist. IO Exception any occur in a program which

reads data using the method readLine ().

Some examples of checked exceptions are given below:

Instantiation Exception

No Such Field Exception

No Such Method Exception

Clone Not Supported Exception

Interrupted Exception

Illegal Access Exception

Class Not Found Exception

Example program for checked exception:

import java.io.*;

class annapurna

{

public static void main(String args[])throws IOException

{

Unit- V

Programming in JAVA Page | 275

DataInputStream dis=novel DataInputStream(System.in);

int p;

System.out.println(“Enter a number”);

p= Integer.parseInt(dis.readLine());

if(p>0)

{

System.out.println(p+”is positive number”);

}

System.out.println(“Program end”);

}

}

In the above example, if we does not insert throws IOException, it will generate

IOException exception, which is a checked exception.

Unchecked Exceptions:

Whenever an exception occurs at the run time of a program, it is called as

unchecked exception. Such exception isconstitutionalvia the operation. In

Unchecked Exceptions they enlarge the java.lang.RuntimeException which is

inherited fromjava.lang. Exception class.

Such exceptions cannot be known beforehand by the compiler. They cannot be

handled in a similar manner as logical errors or syntax errors.

Most often these are caused by situations such as arithmetic overflow, division by

zero.

Unit- V

Programming in JAVA Page | 276

Following given below the unchecked exceptions:

 Null Pointer Exception

 Index Out Of Bounds Exception

 Security Exception

 Array Index Out Of Bounds Exception

 Arithmetic Exception

 Illegal State Exception

 Class Cast Exception

Example program for unchecked exception:

The following program when executed displays, “invalid index”, because we are

referring to “p[6]” which is invalid.

class Test

{

public static void main(String args[])

{

int p[]= {25, 35, 45, 55};

try

{

System.out.println(a[6]);

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println(“invalid index”);

}

}

}

Unit- V

Programming in JAVA Page | 277

Error:

In Java programming language, errors are always over to the function. Errors often

are the problematic settings which cannot be appropriately handled through the

function. Errors in Java are a part of the Error class and its sub classes. Try-catch

blocks should not be used for errors. This is due to the fact that errors usually

signify scenarios which should not be ignored and catched by the application.

Some examples for error are exceptions such shortage of memory or stack

overflow. Errors usually correspond to serious problems.

Here is the list of unchecked exceptions

Illegal Access Errors

Internal Error

Stack Over Flow Error

No Such Field Error

Example program for Error:

class varshini

{

public static void main(String args[])

{

int p=20;

int q=08;

r=p+q;

System.out.println(“r=”+r);

}

}

In the above example, we are not declared the variable “r”, in this case it will

generate No Such Field Error.

Unit- V

Programming in JAVA Page | 278

5.5.1 Exception handling:
Exceptions are thrown as an object of the Exception class. This happens when

something out of the normal happens in a program. When this happens, the

execution is stooped and the exception object handles the error.

The run time system receives the exception object. This exception object holds all

the data related to the abnormal code which caused the error in the first place. It is

stored in form of a stack. This scenario is often regarded as delivering of an

exception.The handling of the exception is also referred to as catching an

exception.

Advantages of Exception-handling in Java:

The main logic of the program is separated from the logic for when something

abnormal happens. This is useful as it helps to form the code more explicit and

easy to preserve.

The calling method has to take care of the exception. This is also of great

significance as it makes the program more efficient.

All the error handling code can be spearedaway the actual code for the application.

Organizing in different error blocks also becomes very easy using multiple try-

catch blocks. Therefore in java, error handling becomes very easy in comparison to

other languages.

The errors which occur at the lower level are passed to the upper level. This is

done by fleeting the exception thing to the calling method. Therefore, the

exception travels up the stack.

Steps in Handling Exception (try..Catch):

The following are the tasks in handling exceptions

Hit the exception – finding the main problem

Unit- V

Programming in JAVA Page | 279

Throw the exception – informing of occurrence of an error

Catch the exception - receive error

Handle the exception – measures for resolving

Finding the problem refers to identify the part of the program where the error may

occur. That part of the program has to be enclosed in try block and the catch block

contains the codes that represent the action to be taken when the error occurs.

Try_catch block:

 In Java programming language exception handling is completed by accepting

try-catch blocks. The programmers can usage the try.. Catch block to handle the

exceptions that suit their programs. This avoids abnormal termination of the

program.

Syntax:

 …..

…..

try

{

 //Statements that may generate the exception

}

catch(exception class object)

{

 //Statements to process the exception

}

catch(exception class object)

{

 //Statements to process the exception

}

Unit- V

Programming in JAVA Page | 280

….

finally

{

 //Statements to be executed before exiting exception handler

}

……

Try Block:

Internal the try block we can include the statements that can cause an exception

and throw an exception.

Catch Bock:

The catch block consists of the code that handles the exceptions and may correct

the exceptions that ensure normal execution of the program. Catching the thrown

exception object from the try block by the answering catch block is called throwing

an exception. The catch block should immediately follow the try block We can

have multiple catch block for a single try block.

Finally Block:

Irrespective of the flow of the program, the code internal the finally block is

always completed. It is not dependent on whether an exception occurred internal

the try catch block or not. It is also executed in the case when the exception is

thrown and not handled in the catch block.

It is recommended that some type of clean up is included in the finally block as the

finally block is completed every time.

It is optional to include the finally block in any program.

Unit- V

Programming in JAVA Page | 281

Example program of Exception Handling:

/* Exception handling */

import java.util.Scanner;

class manju

{

public static void main(String[] args)

{

int p, q, r;

Scanner input = new Scanner(System.in);

System.out.println("Input two integers");

p = input.nextInt();

q = input.nextInt();

r = p / q;

System.out.println("r = " + r);

}

}

Output1:

(No Exception)

C:\java>javac manju.java

C:\java>java manju

Input two integers

8 4

Result = 2

Output2:

(With Exception)

C:\java>manju

Unit- V

Programming in JAVA Page | 282

Input two integers

5 0

Division by zero error occurred

java.lang.ArithmeticException: / by zero

C:\java>

Example program of Exception Handling:

class sadguna

{

public static void main(String args[])

{

int p[] = {20,30,};

int q=7;

try

{

int r = p[2] / (q-p[1]);

}

Catch(ArithmeticException e)

{

System.out.println(“Division by zero”);

}

Catch(ArrayIndexOutOfBoundsException e)

{

System.out.println(“Array index error”);

}

Catch(ArrayStoreException e)

Unit- V

Programming in JAVA Page | 283

{

System.out.println(“wrong data type”);

}

int s = p[1] / p[0];

System.out.println(“s=”+s);

}

}

Output:

Array index error

s=2

Throws Keyword:

The programmer can choose to pass on the handling of the exception which might

occur inside a method to the caller method. This done by using the keyword

“throws”. Whenever throws is specified, there is no requirement for the try-catch

block.

type my_method (p_list) throws index of exceptions

{

//…..

}

The throws section specifies the various exceptions which the method may

possibly throw. It is compulsory as song ascomplete exceptions, exempting for the

type Error either Runtime Exception, eitherseveral of the subclasses.

Unit- V

Programming in JAVA Page | 284

Program Example of Throws clause example:

/* throws clause example */

import Java.io.*;

class annapoorna

{

public static void main(String args[]) throws IOException

{

int a;

String name;

DataInputStream din=new DataInputStream(System.in);

System.out.print("Enter the name:");

name=din.readLine();

System.out.print("Enter the register number:");

a=Integer.parseInt(din.readLine());

System.out.println("\nNAME:"+name);

System.out.println("Reg.No:"+a);

}

}

Output:

C:\java>javac annapoorna.java

C:\java>java annapoorna

Enter the name: sravani

Enter the register number: 01

NAME: sravani

Reg.No: 01

C:\java>

Unit- V

Programming in JAVA Page | 285

User Defined Exceptions:

In scenarios, where the built-in exceptions of Java are not suitable, the programmer

has the option for creating a user defined exception. This is useful to properly

handle the cases highly specific and unique to different applications.

It is essential to store in attention the below mentioned points while certain a user

defined exception:

 The programmerdescribed exception class conditiondevelops from

Exception class.

 The to String() method must always be overridden in the user-defined

exception class in order to give some useful information regarding the

exception.

Syntax:

class name_exception extends Exception

{

name_exception(parameterlist)

{

//required code

}

public String toString()

{

return String

}

}

The user defined exceptions has to be explicitly thrown. This can be done by using
the throw keyword as given below:
 throw ThrowableInstance
 ThrowableInstance should be an object of Throwable class or a subclass of

Throwable.

Unit- V

Programming in JAVA Page | 286

Example:

For example the below program creates an user defined exception when the second

argument is less than or equal to zero

/* User defined exception class */

class myexception extends Exception

{

myexception(String mg)

{

super(mg);

}

}

class userexcep

{

public static void main(String args[])

{

int k,l;

k=Integer.parseInt(args[0]);

l=Integer.parseInt(args[1]);

try

{

if(b<=0)

throw new myexception("Invalid Number");

float m=k/l;

System.out.println(k+" / "+l+"="+m);

}

catch(myexception e)

{

Unit- V

Programming in JAVA Page | 287

System.out.println("The second number should be greater than 0");

System.out.println(e.getMessage());

}

}

}

Output 1:

(No exception)

C:\java>javac userexcep.java

C:\java>java user exception 6 3

6 / 3=2.0

Output 2:

(With Exception)

C:\java>java user exception 6 0

the second number should be greater than 0

Invalid Number

C:\java>

5.5.2 Multiple Catch Statements:
Sometimes multiple exceptions may arise during the run time of a program. In

such cases, multiple try-catch blocks maybe used.

Multiple catch blocks should used in such casesTThe system will consider the

multiple catch blocks in the order in which they are specified. It will stop the

search as soon as the exception matches and then that particular block will be used.

Unit- V

Programming in JAVA Page | 288

Example of Exception handling multiple catch block:

/* Exception handling Multiple catch block*/

class annapoorna

{

public static void main(String args[])

{

try

{

int x,y,z;

x=Integer.parseInt(args[0]);

y=Integer.parseInt(args[1]);

z=c/d;

System.out.println(x+" / "+y+"="+z);

}

catch(ArithmeticException e)

{

System.out.println("Division by zero error occurred");

System.out.println(e);

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println("Supply two arguments from the command line");

System.out.println(e);

}

catch(NumberFormatException e)

{

System.out.println("Not valid Integers");

Unit- V

Programming in JAVA Page | 289

System.out.println(e);

}

}

}

Output 1:

C:\java>javac annapoorna.java

C:\java>java annapoorna 6 2

6 / 2=3

Output 2:

C:\java>java annapoorna 6

Supply two arguments from the command line

java.lang.ArrayIndexOutOfBoundsException

Output 3:

C:\java>java annapoorna 2.5 3

Not valid Integers

java.lang.NumberFormatException: 2.5

C:\java>

5.5.3 Using finally statement
The code in the finally block whilecompleted even eitherno more the exception

arise inside the block of code.

The finally block is normally used for cleanup activities like file closing, flushing

buffers etc.

The finally block is elective.

Unit- V

Programming in JAVA Page | 290

Example of finally block:

/* Finally block*/

class nayan

{

public static void main(String args[])

{

int a,b,c;

a=Integer.parseInt(args[0]);

b=Integer.parseInt(args[1]);

try

{

c=a/b;

System.out.println(a+" / "+b+"="+c);

}

catch(ArithmeticException e)

{

System.out.println("Division by zero error occurred");

System.out.println(e);

}

finally

{

System.out.println("Inside finally block");

}

}

}

Unit- V

Programming in JAVA Page | 291

Output 1:

C:\java>javac nayan.java

C:\java>java nayan 6 3

6 / 3=2

Inside finally block

Output 2:

C:\java>java nayan 6 0

Division by zero error occurred

java.lang.ArithmeticException: / by zero

Inside finally block

The finally block is constantlycompleted, disregarding of even if or not either an

exception is launched. In the above example, the user have inserted a finally block

and it is executed every time regardless of error.

5.6 MANAGING INPUT/OUTPUT FILES IN JAVA

5.6.1 INTRODUCTION
In order to attach streams to data sources like files and network connections, file

streams are used. The subclasses of java.io.InputStream and java.io.OutputStream

java.io. Which are FileInputStream and java.io.FileOutputStream classes are used

to read and write files.

5.6.2 READING AND WRITING FILES:
In java programming language stream classes can be specified as a continuance of

data. Here the InputStream is worn to read the information from the authority and

the OutputStream is worn to write the information to a target.

The following figure shows reading and writing streams.

Unit- V

Programming in JAVA Page | 292

The main streams are two, these are one is FileInputStream and the second one

FileOutputStream.

5.7 CONCEPT OF STREAMS:
Sequence of data is also called as a Stream. The streams are divided in to Two

types. These are:

1. Input Stream

2. Output Stream

The Input Stream is used to read the data from a source as well as output stream is

used to write the data from destinations.

Unit- V

Programming in JAVA Page | 293

5.7.1 STREAM CLASSES:
The Stream Classes are different types. These are

1. Byte Stream Classes

2. Character Stream Classes

5.7.2 BYTE STREAM CLASSES:
In Java programming language byte streams are worn to execute input and output

of 8-bit bytes. For all that nearby no end classes similar to byte streams although

the ultimate regularly worn classes are, FileInputStream and FileOutputStream.

5.7.3 INPUT STREAM CLASSES:
When it is required to read data from some file, FileInputStream is used. A

FileInputStream fetches input bytes from a file in the host file system To create a

new object, the ‘new’ keyword is used. Many different constructors are available.

InputStream is = new FileInputStream("C:/java/school");

In the above example, the name of the file from which the data needs to be read is

give as the argument.

File f = new File("C:/java/hello");

InputStream f = new FileInputStream(f);

The above used constructor takes a file object to create an input stream object,

therefore a fie object must be created first.

Unit- V

Programming in JAVA Page | 294

5.7.4 OUTPUT STREAM CLASSES:
To create a file and write data into it, FileOutputStream is utilized. If the file

doesn't already exists, this stream first creates it, before opening it for output.

Two constructors which can be used to create a FileOutputStream object are

described below:

OutputStream f = new FileOutputStream("C:/java/hello")

The above used constructor takes the file name as the argument to create a stream

object to write the file.

File f = new File("C:/java/hello");

OutputStream f = new FileOutputStream(f);

In the above method, it is first required to create a file object using the File()

method. Then the constructor takes that object as an argument to create a stream

object to write the file.

After the OutputStream object is created helper methods can be used to write to

stream or to perform other operations on the stream. It is also possible to specify

encoding in the constructor of the OutputStreamWriter on a FileOutputStream.

5.8 CHARACTER STREAM CLASSES:
In Java programming language Byte streams continue worn via execute input and

output of 8-bit bytes, considering that Java programming language Character

streams continue worn via execute input and output for 16-bit unicode. For all that

existent continue full classes associated to character streams although the

maximum usually worn classes continue, FileReader and FileWriter. For all that

privately FileReader needs FileInputStream and FileWriter needs

Unit- V

Programming in JAVA Page | 295

FileOutputStream although present the leading change is that FileReader reads two

bytes at a time and FileWriter writes two bytes at a time.

5.8.1 READER and WRITER STREAM CLASSES:
This Reader and Writer classes and its subclasses actworn since doing salong

information in document form. During the Writer class consist of approaches

such act equivalent to these feasible in OutputStream class, the Reader class

consist of approaches this act equivalent to these feasible in InputStream class.

Here sole variation is that the approaches in the Writer and Reader classes

actarrange to contractincluding character input or output, at the same time the

identicalapproaches in the OutputStream as well asInputStream classes

actarranged to contractincluding byte input or output.

Unit- V

Programming in JAVA Page | 296

5.8.2 STREAMS:
It is a arrangement of objects against a authority, which ever stays combined

movements. These are the following characteristics of a Streams:

 Sequence of elements

 Source

 Aggregate operations

 Pipelining

 Automatic iterations

It is a modern abstract layer popularized in Java programming Language (8).

Proving this, the user couldbe measure information in a analytical approach

identical to SQL statements.

The following example of SQL Statement:

SELECT max(Gross Salary),Lecturer_Identification Number,Lecturer _name

FROM Lecturer

This raised SQL explanation accordingly recovery the max salary Lecturer

information, on the outside performing several computing on the programmer

steam. Proving number of structure in Java programming language, a programmer

accepts to cause loops and prepareimitatedreviews. One morething is ability; as

dual-core processors actfeasible at calm, a Java programmerincludes to write

parallel code converting this could be nice error-level.

5.9 SUMMARY:
This unit has provided a detailed introduction to the Packages. As Packages

defining the packages, creation of packages, user defined packages, Java API

Packages is very important to understand and this has been presented in the unit in

Unit- V

Programming in JAVA Page | 297

the various sections. The concept of using system packages and accessing

packages is used extensively in Java and Defining interfaces, extending interfaces,

implementing interfaces, assessing interface variables and multiple inheritances.

Use of errors and explained types of errors. Explained about exceptions, exception

handling multiple catch statements and using finally statements.

Java is a powerful programming language in this unit we explained about

managing input and output files in java and concept of streams.

Unit- V

Programming in JAVA Page | 298

5.10 EXERCISE
1. Write a java program to get a list of all file/directory names from the given

2. Write a java program to check if given pathname is a directory or a file

3. Write a java program to check if a file or directory specified by pathname exists

or not.

Unit- V

Programming in JAVA Page | 299

5.11 OBJECTIVE TYPE QUESTIONS

1. A __________________ consists of collecting of classes and interfaces.

a) Package b) String c) Array d) None

Ans: A

2. ______________ refers to a group of classes and related types.

a) String b) Package c) Array d) None

Ans: B

3. A single package may comprise of _________________.

a) String b) Package c) Multiple Files d) None

Ans: C

4. Names for packages are always given ____________

a) Upper case b) Lower case c) None

Ans: B

5. Package is a group of classes created in a unique directory.

a) Non directory b) Duplicate c) unique directory d) None

Ans: C

6. Packages can be accessed by using import keyword.

a) Import keyword b) Export Keyword

c) main Keyword d) None

Ans: A

Unit- V

Programming in JAVA Page | 300

7. API Full form

a) Application Programming Interface b) Apple Programming Interface

c) Application Programming Internal d) None

Ans: A

8. The packages in Java are organized in a_______________

a) hierarchical structure b) Single Structure

c) Method Structure d) None

Ans: A

9. Comprise a package is also known as _______________

a) Package members b) Package Method

c) Members d) None

Ans: A

10. An _____________ in Java can only have method signature and constant

declarations.

a) Internal b) Interface c) Method d) None

Ans: B

11. ____________ Definitions are not allowed in an interface.

a) Internal b) Interface c) Method d) None

Ans: C

12. A ___________ can implement many interfaces.

a) class b) Interface c) Method d) None

Ans: A

Unit- V

Programming in JAVA Page | 301

13. The implementation of interfaces are used as

a) super classes b) sub class c) class d) None

Ans: A

14. The java programming language does not allow________________

a) Inheritance b) Single Inheritance

c) Multiple Inheritance d) None

Ans: C

15. How many types of Exceptions

a) 04 b) 03 c) 01 d) None

Ans: B

16. The ________________ which are encountered by the compiler are referred

to as checked exceptions.

a) Checked Exceptions b) Exceptions

c) Unchecked Exceptions d) None

Ans: A

17. Whenever an exception occurs at the run time of a program, it is called as

_________________.

a) Checked Exceptions b) Exceptions

c) Unchecked Exceptions d) None

Ans: C

Unit- V

Programming in JAVA Page | 302

18. _____________ in Java are a part of the Error class and its sub classes.

a) Errors b) Methods

c) Exceptions d) None

Ans: A

19. Exceptions are thrown as an object of the Exception class.

a) Errors b) Methods

c) Exceptions d) None

Ans: C

20. In Java programming language exception handling is completed by

accepting_____________ blocks.

a) Try-catch b) Methods

c) Exceptions d) None

Ans: A

21. The catch block consists of the code that handles the exceptions and may

correct the exceptions that ensure normal execution of the program.

a) Try-catch b) Catch Block

c) Exceptions d) None

Ans: B

22. The catch block should immediately follow the try block.

a) Try Block b) Catch Block

c) Exceptions d) None

Ans: A

Unit- V

Programming in JAVA Page | 303

23. ______________ also executed in the case when the exception is thrown

and not handled in the catch block

a) Try Block b) Catch Block

c) Finally Block d) None

Ans: C

24. The finally block is

a) Elective b) Optional C) Compulsory d) None

Ans: A

Unit- V

Programming in JAVA Page | 304

