Student Study Project On VECTOR SPACE

Submitted by

A. Naga Rani	B.Sc [MPC] E/M
B. Rajavardhan	B.Sc [MPC] E/M
A. Pranitha	B.Sc [MPC] T/M
Nishad	B.Sc [MPC] T/M
S. Karthikeya	B.Sc [MPCs] E/M

Under the Guidance of
S. Madhavi Latha
Lecturer in Mathematics

Submitted to
 DEPARTMENT OF MATHEMATICS

Dr.BRR GOVERNMENT DEGREE COLLEGE, JADCHERLA
MAHABUBNAGAR (DIST), TELANGANA

CERTIFICATE

This is to certify that the student study project work entitled VECTOR SPACE is a bonafide work done by the students of III MPC II MPCs A. Naga Rani, B. Rajavardhan, A. Pranitha , Nishad, S. Karthikeya under my supervision for the award of student study project work in Mathematics, Department of Mathematics, Dr. BRR Government Degree College, Jadcherla.

DECLARATION

We hereby declare that student study project work entitled VECTOR SPACE is a genuine work done by us under the supervision of S.Madhavi Latha, Lecurter in Mathematics, Department of Mathematics, Dr.BRR Government Degree College, Jadcherla.

Name of the Student	Class	Hall Ticket Number	Signature
A. Naga Rani	III MPC	19033006441005	A. Nogarani
B. Rajavardhan	III MPC	19033006441006	B. Raja Vardhan
A. Pranitha	III MPC	19033006441513	A. pranitha
Nishad	III MPC	19033006441520	Nishand
S. Karthikeya	II MPCs	20033006468036	S. Karthi Keya

AIM: TO STUDY VECTOR SPACES

Introduction:

A Vector Space is a set of objects called vectors which it is possible to add and to multiply by scalars. Vector Spaces occur in numerous branches of mathematics as well as in many applications. The linearity of vector Spaces has made these abstract objects important in diverse areas such as statistics, physics and economics where the vectors may indicate probabilities, forces.

OBJECTIVES:

1. DEFINE VECTOR SPACE
 2. DIFFERENT EXAMPLES OF VECTOR SPACE
 3. PROPERTIES OF VECTOR SPACE
 4. DEFINE SUBSPACE
 5. EXAMPLES OF SUBSPACE

METHODOLOGY:
STUDY THE CONCEPT OF ALGEBRAIC DEFINITION OF GROUP

RING AND FIELD

VECTOR SPACES

Definition : A vector space " v " is a non-empty set containing vectors on which are defined two operators called Addition and Multiplication by scalars that satisfies the following conditions for all vectors $\bar{u}, \bar{v}, \bar{w}$ in $v, \& c, d$ in R
i) $\bar{u}+\bar{v} € \vee \quad \bar{u}, \bar{v} € \vee$ (Closure property)
ii) $\bar{u}+\bar{v}=\bar{v}+\bar{u} \bar{u}, \bar{v} € V$ (Commutative property)
iii) ($\bar{u}+\bar{v})+\bar{w}=\bar{u}+(\bar{v}+\bar{w}), \bar{u}, \bar{v}, \bar{w} € V($ Associative property)
iv) There exist $\bar{\delta} € \mathrm{~V} ; \overline{\mathrm{u}}+\bar{o}=\overline{\mathrm{u}} \forall \overline{\mathrm{u}} € \mathrm{~V}$ (Identity property)
v) There exist $u € V, \bar{u}+(-\bar{u})=\bar{o} \forall \bar{u} € V$ (Inverse property)
vi) There scalar multiple of $C \bar{u}$ by C denoted by $C \bar{u} € \vee, \bar{u} € V, c$ € R
vii) $C(\bar{u}+\bar{v})=c \bar{u}+c \bar{v} ; \forall \bar{u} € \vee R € R$
viii) $(c+d) \bar{u}=c \bar{u}+d \bar{u} ; \forall \bar{u} € V, c, d € R$
ix) $\quad C(d \bar{u})=c d(\bar{u}) ; \forall \bar{u} € V, c, d € R$
x) $\quad \mathrm{I} . \overline{\mathrm{u}}=\overline{\mathrm{u}} ; \forall \overline{\mathrm{u}} € \mathrm{~V}$
($R,+,$.) is a field ($v,+$) is order triple group $R, \forall x_{i}, y_{i} € R c € R$ defined
i) $\left.\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)+\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)=\left(\mathrm{x}_{1}+\mathrm{y}_{1}, \mathrm{x}_{2}+\mathrm{y}_{2}, \mathrm{x}_{3}+\mathrm{y}_{3}\right)$
ii) $C\left(x_{1}, x_{2}, x_{3}\right)=\left(c x_{1}, c x_{2}, c x_{3}\right)$ then show that $v(R)$ is a vector space Let $\bar{u}=\left(x_{1}, x_{2}, x_{3}\right)$

$$
\begin{aligned}
& \overline{\mathrm{v}}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right) \quad \mathrm{C}, \mathrm{~d} € \mathrm{R} \\
& \overline{\mathrm{w}}=\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}\right) \quad € \mathrm{~V}
\end{aligned}
$$

i) To prove $\bar{u}+\bar{v} € V$

$$
\begin{gathered}
\bar{u}+\bar{v}=\left(x_{1}, x_{2}, x_{3}\right)+\left(y_{1}, y_{2}, y_{3}\right) \\
=\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\left(x_{3}+y_{3}\right) \\
\\
€ v \\
\cdots
\end{gathered}
$$

ii)To prove $\bar{u}+\bar{v}=\bar{v}+\bar{u}$

$$
\begin{aligned}
\bar{u}+\overline{\mathrm{v}} & =\left(x_{1}, x_{2}, x_{3}\right)+\left(y_{1}, y_{2}, y_{3}\right) \\
& =\left(x_{1}+y_{1}, x_{2}, y_{2}, x_{3}+y_{3}\right) \\
& =\left(y_{1}+x_{1}, y_{2}+x_{2}, y_{3}+x_{3}\right) \\
& =\left(y_{1}, y_{2}, y_{3}\right)+\left(x_{1}, x_{2}, x_{3}\right) \\
& =\bar{v}+\bar{u}
\end{aligned}
$$

iii) To prove $(\bar{u}+\bar{v})+\bar{w}=\bar{u}+(\bar{v}+\bar{w})$

$$
\begin{aligned}
& (\bar{u}+\bar{v})+\bar{w}=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right)+\left(z_{1}, z_{2}, z_{3}\right) \\
= & {\left.\left[\left(x_{1}+y_{1}\right)+z_{1},\left(x_{2}+y_{2}\right)+z_{2}\left(x_{3}+y_{3}\right)+z_{3}\right)\right] } \\
= & {\left[x_{1}+\left(y_{1+}+z_{1}\right), x_{2}+\left(y_{2}+z_{2}\right), x_{3}\left(y_{3}+z_{3}\right)\right.} \\
= & {\left[\left(x_{1}, x_{2}, x_{3}\right)+\left(y_{1}+z_{1}, y_{2}+z_{2}, y_{3}+z_{3}\right)\right] } \\
= & \bar{u}+[\bar{v}+\bar{w}] \\
\cdots & (\bar{u}+\bar{v})+\bar{w}=\bar{u}+(\bar{v}+\bar{w}), \forall \bar{u}, \bar{v} \bar{w} € R
\end{aligned}
$$

iv) To prove $\bar{u}+\bar{o}=\bar{u}$

$$
\begin{aligned}
& \text { Let } \bar{o}=(0,0,0) € V \\
& \bar{u}+\bar{o}=\left(x_{1}, x_{2}, x_{3}\right)+(0,0,0) \\
& =\left(x_{1}+0, x_{2}+0, x_{3}+0\right) \\
& =\left(x_{1}, x_{2}, x_{3}\right) \\
& =\bar{u} \\
& \bar{u}+\bar{o}=\bar{u}, \forall \bar{u} € v
\end{aligned}
$$

v)To prove $\bar{u}+(-\bar{u})=\bar{o}$

$$
\begin{aligned}
& \text { Let }(-\bar{u})=\left(-x_{1} x_{2}, x\right) € V \\
& \bar{u}+(-\bar{u})=\left(x_{1}, x_{2}, x_{3}\right)+\left(-x_{1}, x_{2} x_{3}\right) \\
& =\left(x_{1}-x_{1}, x_{2}-x_{2}, x_{3}-x_{3}\right) \\
& =(0,0,0)=0 \\
& \bar{u}+(-\bar{u})=0 \forall \bar{u},-\bar{u} € V
\end{aligned}
$$

vi)To prove $\mathrm{Cu}+v$

$$
\begin{aligned}
& C \bar{u}=C\left(x_{1}, x_{2}, x_{3}\right) \\
& =C x_{1} C x_{2}, c x_{3}
\end{aligned}
$$

€ V
$\forall c \bar{u} € \vee c € R$
vii) To prove $C(\bar{u}+\bar{v})=c \bar{u}+c \bar{v}$

$$
\begin{aligned}
& C(\bar{u}+\bar{v})=c\left(x_{1}+y_{1}, x_{2},+y_{2}, x_{3}+y_{3}\right) \\
&= {\left[c x_{1}+c y_{1}, c x_{2}+c y_{2}, c x_{3}+c y_{3}\right] } \\
&= c\left(x_{1}, x_{2}, x_{3}\right)+\left(y_{1}, y_{2}, y_{3}\right) \\
&= c \bar{u}+c \bar{v} \\
& \forall \bar{u}, \bar{v} € V € R
\end{aligned}
$$

Viii) To prove $(c+d) \bar{u}=(\bar{u}+d \bar{u}$

$$
\begin{aligned}
& (c+d) \bar{u}=(c+d)\left(x_{1}, x_{2}, x_{3}\right) \\
= & (c+d) x_{1},(c+d) x_{2},(c+d) x_{3} \\
= & c x_{1}+d x_{1}, c x_{2}+d x_{2}, c x_{3}+d x_{3} \\
= & \left(c x_{1}, c x_{2}, c x_{3}\right)+\left(d x_{1}, d x_{2}, d x_{3}\right) \\
= & c\left(x_{1}, x_{2}, x_{3}\right)+d\left(x_{1}, x_{2}, x_{3}\right) \\
= & c \bar{u}+d \bar{u}
\end{aligned}
$$

" $\quad(c+d) \bar{u}=c \bar{u}+d \bar{u} \forall \bar{u} € V c, d € R$

Properties of vector spaces
Theorem: V is a vector space then
i) r is unique
ii) if $u € V$ then $-\bar{u}$ unique in "v"

Proof: V is a vector space

i) To prove \bar{o} is unique

Since V is vector space
" $\bar{o} € V$ such that $\bar{u}+\bar{o}=\bar{u} \rightarrow$ (1) $\forall \bar{u} € \bar{v}$
If possible \bar{w} is another a vector in v such that $\bar{u}+\bar{w}=\bar{u}, \forall \bar{u} € V$

$$
\begin{aligned}
& \text { For } \bar{o} € \mathrm{v} ; \overline{\mathrm{o}}+\overline{\mathrm{w}}=\overline{\mathrm{o}} \rightarrow \text { (2) but } \\
& \overline{\mathrm{o}}+\mathrm{w}=\mathrm{w} \rightarrow \text { (3) [property] } \\
& \text { from(2)\&(3) } \\
& \cdots \overline{\mathrm{o}}=\overline{\mathrm{o}}+\overline{\mathrm{w}}=\overline{\mathrm{w}} \\
& \rightarrow \overline{\mathrm{w}}=\overline{\mathrm{o}} \\
& \cdots \overline{\mathrm{o}} \text { vector is unique in }
\end{aligned}
$$

ii) To prove $\bar{u} € v$ then $-\bar{u}$ is negative if $\bar{u} € v$ then definition of vector space

$$
\overline{\mathrm{u}}+(-\overline{\mathrm{u}})=\overline{\mathrm{o}} \rightarrow \text { (4) }\left[{ }^{\cdots} \mathrm{v}^{\text {th }} \text { property }\right]
$$

Suppose that let $\bar{w} € V$ be another vector such that

$$
\bar{u}+\bar{w}=\bar{o} \rightarrow(5)
$$

Add both sides with (- is)

$$
\begin{aligned}
& (-\bar{u})+(\bar{u}+\bar{w}=(-\bar{u})+v \\
& (-\bar{u})+(\bar{u})+\bar{w}=-\bar{u}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{o}+\bar{w}=-\bar{u} \\
& \bar{w}=-\bar{u} \\
& \cdots-\bar{u} \text { is unique } V
\end{aligned}
$$

Theorem: Let v be a vector space then
i) $\quad o \bar{u}=o, \bar{u} € V$
ii) $\mathrm{C} \overline{\mathrm{O}}=\overline{\mathrm{o}} ; \forall$ scalar
iii) if $\bar{u} € V$ then $(-1) \bar{u}=\bar{u}$

Proof: V is a vector space

i) To prove $o \bar{u}=\bar{o}, \bar{u} € V$

$$
\begin{aligned}
& \mathrm{ou}=(0+0) \bar{u} \\
& o \bar{U}=O \bar{U}+O \bar{U}
\end{aligned}
$$

Add both sides -OU

$$
\begin{aligned}
& -O \bar{U}+O \bar{U}=-O \bar{U}+(O \bar{U}+o \bar{u}) \\
& \bar{o}=o+o \bar{u} \\
& \cdots \bar{o}=o \bar{u}, \forall \bar{u} € V
\end{aligned}
$$

ii) To prove $c \bar{o}=\bar{o}, \forall$ scalar

$$
\begin{aligned}
& c \bar{o}=c(\bar{o}+\bar{o}) \\
& c \bar{o}=c \bar{o}+c \bar{o}
\end{aligned}
$$

Add - co both sides

$$
\begin{aligned}
&-c \bar{o}+c \bar{o}=-c \bar{o}+(c \bar{o}+c \bar{o}) \\
& \bar{o}=(-c \bar{o}+c \bar{o})+c \bar{o} \\
& \bar{o}=0+c \bar{o} \\
& \bar{o}=c \bar{o} \forall \text { scalar }
\end{aligned}
$$

iii) To prove $\bar{u} € V$ then $(-1) \bar{u}=-\bar{u}$

$$
\begin{aligned}
& \bar{u}+(-1) \bar{u}=\bar{u}+(-\bar{u}) \\
& =\bar{o} \\
& (-1) \bar{u}=-\bar{u} \\
& (O R) \\
& \bar{u}+(-1) \bar{u}=\bar{o} \\
& \text { Add }(-\bar{u}) \text { both side } \\
& -\bar{u}+(\bar{u}+(-1) \bar{u})=-\bar{u}+\bar{o} \\
& (-\bar{u}+\bar{u})+(-1)(\bar{u})=-\bar{u} \\
& O+(-1) \bar{u}=-\bar{u} \\
& (-1)(\bar{u})=-\bar{u}
\end{aligned}
$$

SUB SPACE

- H is a subset of a vector space " v ' if H satisfies following conditions then , H is called Subspace of V
i) Zero vector ($\overline{\mathrm{O}}$) in V is also in H i.e., $\bar{\sigma} € H$
ii) H is closure with respect to addition
i.e., $\bar{u}+\bar{v} € H, \forall \bar{u}, \bar{v} € H$
iii) H is closure with respect to scalar Multiplication
i.e., $c \bar{u} € H, \bar{u} € H \bar{c}$ is scalar

Theorem: V is a vector space W is a non -empty subset of ' v ' w is subspace of v
$\leftrightarrow c \bar{u}+d \bar{v} € w, \bar{u}, \bar{v} € w c, d$ are scalar
Proof: V is a vector space
W is a non-empty subset of V

Necessary condition: W is a subspace of v now, we prove that $c \bar{u}+d \bar{v} € w ; \bar{u}, \bar{v} € \mathrm{w} c, d$ are scalar from scalar Multiplication
C is a scalar $\bar{u} € w \rightarrow c \bar{u} € w$
D is a scalar $\bar{v} € w \rightarrow d \bar{v} € w$
$c \bar{u}, d \bar{v} € w$ from addition closure
"'cū $+d \bar{v} € w, \forall \bar{u}, \bar{v} € w, c, d$ are scalar
Sufficient condition: Let $c \bar{u}+d \bar{v} € w \bar{u}, \bar{v} € w, c, d$ are scalars
Now, we will subspace of v
i) $c \bar{u}+d \bar{v}=w \rightarrow$ (1)

$$
\text { let } c=0, d=0
$$

Put $c=o, d=o$ in equation (1)
(1) $\rightarrow o(\bar{u})+o(\bar{v}) € w$ $\mathrm{O}+\mathrm{O} € \mathrm{w}$
ii) Put $c=1, d=1$, in equation(1)

$$
1(\bar{u})+1(\bar{v}) € w
$$

$$
\bar{u}+\bar{v} € w, \forall \bar{u}, \bar{v} € w
$$

iii) Put $d=o$ in equation (1) $(\bar{u}+o(\bar{v}) € w$ $c \bar{u} € w \forall \bar{u} € w, c$ is a scalar
W is a subspace of v

- Consider the vector space R^{2} with vector addition? scalar Multiplication i.e., $R^{2}=\{(x, y) / X, y € R\}$ Show that the subset $H=\left\{\left(x_{1}-x\right) / x € R\right\}$ is a subspace of R^{2}

$$
R^{2}=\{(x, y) / x, y € R\}
$$

$$
H=\left\{\left(x_{1}-x\right) / x € R\right\}
$$

i) To prove $\bar{\sigma} € H$

$$
\begin{aligned}
& (0,0) € R^{2} \\
& (0,0) €=(0,-0) € H, o € R
\end{aligned}
$$

ii) To prove $\bar{u}+\bar{v} € w-v \bar{u}, \bar{v} € H$

$$
\begin{aligned}
& \text { Let } \bar{u}=\left(x_{1}-x\right), \bar{v}=\left(y_{1}-y\right) €+1 \forall x_{1} y € R \\
& \begin{aligned}
\bar{u}+\bar{v} & =\left(x_{1}-x\right)+\left(y_{1}-y\right) \\
& =(x+y,-(x-y)) \\
& € H, \forall \bar{u}, \bar{v} € H
\end{aligned}
\end{aligned}
$$

iii) To prove $c \bar{u} € H, \forall \bar{u} € H$

$$
\begin{aligned}
& \text { Let } \bar{u}=\left(x_{1}-x\right) € H \\
& c \bar{u}=c\left(+x_{1}-x\right) \\
& =\left(c x_{1}-c x\right) \\
& \text { € } \mathrm{H}
\end{aligned}
$$

Consider a vector space R3 with vector addition and vector
Multiplication i.e., $\mathrm{R}^{3}\left\{\begin{array}{l}x 1 \\ \mathrm{x} 1 \\ x 1\end{array} / \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} € \mathrm{R}\right\}$, show that $\mathrm{H}=\left\{\begin{array}{c}x \\ x^{2} \\ 0\end{array} / \mathrm{x}_{1}, \mathrm{x}_{2} €\right.$
$R\}$ is a sequences

$$
\begin{aligned}
& \left.R^{3}=\left\{\left[x_{1} x_{2} x_{3}\right]\right\} / x_{1}, x_{2}, x_{3} € R\right\} \\
& \left.H=\left\{\left[x_{1} x_{2} 0\right]\right\} / x_{1} x_{2} € R\right\}
\end{aligned}
$$

i) To prove $\bar{o} € H$

$$
\begin{aligned}
& 0 \\
& 0 € R^{3} \circ € R \\
& 0
\end{aligned}
$$

0
0 € H O€R
0

$$
\bar{\sigma} € H, \forall € R
$$

ii) To prove $\bar{u}+\bar{v} € H \rightarrow \bar{u}, \bar{v} € H$

$$
\begin{aligned}
& x 1 \quad y \\
& \text { Let } \overline{\mathrm{u}}=\underset{0}{x 2} \quad \overline{\mathrm{v}}=\underset{0}{y_{2}} \quad \forall \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2} € \mathrm{R} \\
& \overline{\mathrm{u}}+\overline{\mathrm{v}}=\begin{array}{cc}
x & y \\
x_{2} & +y_{2} \\
0 & 0
\end{array} \\
& x \quad y \\
& \begin{array}{c}
\overline{\mathrm{u}}+\overline{\mathrm{v}}=x_{2}+y_{2} \\
0 \quad 0
\end{array} \\
& € H, \forall \bar{u}, \bar{v} € H
\end{aligned}
$$

iii) To prove $\bar{c} \bar{€} € \forall \forall \bar{u} € H$

$$
\begin{gathered}
x \\
\overline{\mathrm{u}}=x_{2} \\
0 \\
x \\
\mathrm{c} \overline{\mathrm{u}}=\mathrm{c} x_{2} \\
0 \\
c x \\
\overline{\mathrm{u}}=c x_{2} \\
0 \\
€ \mathrm{H}, \forall \overline{\mathrm{u}} € \mathrm{H} \text { c is a scalar }
\end{gathered}
$$

Theorem: V is a vector space $\mathrm{H} \& \mathrm{~K}$ are two subspaces in v then $\mathrm{H} \cap \mathrm{K}$ is a subspaces of v

Proof: V is a vector space $\mathrm{H} \& \mathrm{k}$, are two subspace in v
i) To prove $\bar{O} € H, \bar{O} € K$ O € $\mathrm{H} \cap \mathrm{K}$
ii) To prove $\bar{u}+\bar{v} € H \cap K$

Since H\&K are two subspaces in v

$$
\begin{aligned}
\leftrightarrow & \bar{u}+\bar{v} € H, \forall \bar{u}, \bar{v} € H \rightarrow(1) \\
\leftrightarrow & \bar{u}+\bar{v} € K, \forall \bar{u}, \bar{v} € K \rightarrow(2) \\
& \bar{u}+\bar{v} € H \cap K, \forall \bar{u}, \bar{v} € H \cap K
\end{aligned}
$$

iii) To prove cū $€ H \cap K$

Let $\bar{u} € \mathrm{H} \cap \mathrm{K} \mathrm{c}$ is a scalar ū $€$ HחK
$c \bar{u} € H, c \bar{u} € K, \forall \bar{u} € H \cap K,[H \& K$, are subspace]
$H \cap K$ is a subspace of v
Definition: H\&K, are two subset of a ve define the sum $\mathrm{H}+\mathrm{K}$ as $\mathrm{H}+\mathrm{K}$

$$
=\{\overline{\mathrm{w}} / \mathrm{w}=\overline{\mathrm{u}}+\overline{\mathrm{v}}\} \overline{\mathrm{u}} € K, \overline{\mathrm{v}} € \mathrm{H}\}
$$

Theorem: H, K are two subspaces in a vector space v then $\mathrm{H}+\mathrm{K}$, is also subspace in v

Proof: V is a vector space H\&K, are two subspace in a, v

Now, we will prove that H\&K, is also subspace u in v

$$
H+K,=\{\bar{w} / w=\bar{u}+\bar{v}, \bar{u} € H, \bar{v} € K\}
$$

i) H is a subspace of v

$$
\begin{aligned}
& \bar{o} € H \\
& K \text { is subspace of } v, \bar{o} € K \\
& \bar{\delta} € H, \bar{o} € K \\
& \bar{o}+\bar{\sigma} € H+K \\
& \bar{\delta} € H+K
\end{aligned}
$$

ii) Let $\bar{w}_{1}=\bar{u}_{1}+\bar{v}_{1}, \bar{u}_{1} € H_{1}, \bar{v}_{1} € K$

$$
\begin{gathered}
\overline{\mathrm{w}}_{2} \overline{\mathrm{u}}_{2}+\overline{\mathrm{v}}_{2}, \overline{\mathrm{u}}_{2} € \mathrm{H}_{2}, \overline{\mathrm{v}}_{2} € \mathrm{~K} \\
\overline{\mathrm{w}}_{1}+\overline{\mathrm{w}}_{2}=\left(\overline{\mathrm{v}}_{1}+\overline{\mathrm{v}}_{2}\right)+\left(\overline{\mathrm{u}}_{1}+\overline{\mathrm{u}}_{2}\right) \\
=\left(\bar{u}_{1}+\overline{\mathrm{u}}_{2}\right)+\left(\overline{\mathrm{v}}_{1}+\overline{\mathrm{v}}_{2}\right) \\
\overline{\mathrm{u}}_{1}, \overline{\mathrm{u}}_{2}, € \mathrm{E} \rightarrow \overline{\mathrm{u}}_{1}+\overline{\mathrm{u}}_{2} € \mathrm{M} \\
\overline{\mathrm{v}}_{1}, \overline{\mathrm{v}}_{2}, € \mathrm{v}_{1}+\overline{\mathrm{v}}_{2} € \mathrm{~K} \\
\cdots \\
\overline{\mathrm{w}}_{1}+\overline{\mathrm{w}}_{2} € \mathrm{H}
\end{gathered}
$$

iii) Let c be a scalar

$$
\begin{array}{ll}
& \bar{u}_{1} € H, \bar{v}_{1} € K \\
& \mathrm{H} \& K \text { are vector space in } v \\
& \mathrm{c} \bar{u}_{1} € H, \forall \bar{u}_{1} € H \\
& \mathrm{c} \overline{\mathrm{v}}_{1} € H, \forall \overline{\mathrm{v}}_{1} € K \\
\rightarrow \quad & \mathrm{c} \bar{u}_{1}+\mathrm{c} \overline{\mathrm{v}}_{1} € H+K \\
\rightarrow \quad & \mathrm{C}\left(\bar{u}_{1}+\overline{\mathrm{v}}_{1}\right) € H+K \forall \bar{u}_{1}+\overline{\mathrm{v}}_{1} € H+K \\
& H+K \text { is a subspace of } v
\end{array}
$$

Theorem: V is a vector space H and K , are two subspace in v then $\mathrm{H} \cap \mathrm{K}$ is not a sub-space of v

Proof: V is a vector space
$\mathrm{H} \& \mathrm{~K}$ are subspace in v
We will prove that $\mathrm{H} \cap \mathrm{K}$ is not a subspace of v
$E x$: Let v is a vector space in R^{2}
$H=\left\{\left(x_{1}-x\right) / x € R\right\} \xi k=\{(x 1,2 x) / x € R\}$ are two subspace of R^{2}
$H=\left\{\left(x_{1}-x\right),(x, 2 x) / x € R\right\}$
Let $\mathrm{x}=2$
$H=\{(2,-2)\}, k=\{(2,4)\}$
HUK $=\{(2,-2),(2,4)\}$
$V_{1}+V_{2}=\{(2,-2),+(2,4)\}$

$$
\begin{aligned}
= & (2+2,-2+4) \\
= & (4,2)+\text { HUK } \\
& \text { HUK is not subspace in } v_{1}
\end{aligned}
$$

CONCLUSION:
 WE KNOW

1. DEFINATION OF VECTOR SPACE
 2. DIFFERENT EXAMPLES OF VECTOR SPACE
 3. PROPERTIES OF VECTOR SPACE
 4. DEFINATION OF SUBSPACE
 5. EXAMPLES OF SUBSPACE

