GOVERNMENT DEGREE COLLEGE GAMBHIRAOPET DEPARTMENT OF MATHEMATICSSTUDY PROJECT ON #### 'VEDIC MATHEMATICS' #### Submitted by: | S.No. | NAME | GROUP | YEAR | HALLTICKET No. | |-------|-----------------|----------------|------|-----------------| | 1 | P.SHRUTHIJA | B.Sc.(M.P.Cs.) | I | 210770864681031 | | 2 | L.ASHWINI | B.Sc.(M.P.Cs.) | I | 210770864681021 | | 3 | S.CHANDANA | B.Sc.(M.P.Cs.) | I | 210770864681039 | | 4 | M.SHRUTHI | B.Sc.(M.P.Cs) | I | 210770864681026 | | 5 | G.KALYANI | B.Sc.(M.P.Cs.) | I | 210770864681017 | | 6 | P.VAMSHI | B.Sc.(M.P.Cs.) | I | 210770864681034 | | 7 | D.MADHU | B.Sc.(M.P.Cs.) | I | 210770864681012 | | 8 | P.REKHA | B.Sc.(M.P.Cs.) | I | 210770864681035 | | 9 | P.ARAVIND KUMAR | B.Sc.(M.P.Cs.) | I | 210770864681030 | | 10 | M.DILEEP | B.Sc.(M.P.Cs.) | I | 210770864681023 | | 11 | G.SRINATH | B.Sc.(M.P.Cs.) | I | 210770864681016 | SUPERVISED BY: J SRAVAN KUMAR LECTURER IN MATHEMATICS # Project on VEDIC MATHEMATICS ### Abstract: Vedic Mathematics is the the name given to the ancient Indian system of Mathematics that was rediscovered in the early 20th Century from ancient Vedas. The algorithms based on conventional Mathematics can be simplified and even optimized by the use of Vedic Mathematics. ### **Objectives:** - It helps a person to solve the problems 10-15 times faster. - It reduces burden(need to learn tables up to 9 only). - It is a magical tool to reduce scratch work and finger counting. - It increases concentration. - Time saved can be used to answer more questions. - Logical thinking process gets enhanced. - It provides one line answer. ## **SQUARING OF NUMBERS ENDING** # (Last digits add to ten) # Conventional Method ### **Vedic Mathematics** 65 X 65= 4225 Multiply the previous digit 6 by one more than itself. Multiply last digits viz. (5X5) and write down 25 to the right of 42 viz. (6X7). ### **Examples:** Square of 15 = 225 Square of 25 = 625 Square of 35 = 1225 Square of 45 = 2025 Square of 55 = 3025 Square of 65 = 4225 Square of 75 = 5625 Square of 85 = 7225 Square of 95 = 9025 etc.... ## Squaring of Numbers between 50 and 60 ### Method: - Add 25 to the digit in the unit place and put it left hand part of the - Square the digits in the unit place and put it as the right hand part of the answer (if it is single digit then convert it to two digits) ### More Examples: Square of 52 = (25+2=27, 2x2=04) = 2704 Square of 53 = (25+3=28, 3x3=09) = 2809 Square of 54 = (25+4=29, 4x4=16) = 2916 Square of 56 = (25+6=31, 6x6=36) = 3136 etc... ## MULTIPLICATION OF NUMBERS WITH A SERIE OF 9'S Case: 2. multiplying a number with higher number of nines. ### Multiplication of numbers with a series of 1's: ### Case - 1: Multiplying equal Digit number with 11 - First we write the right hand most digit 2 of first numbers as it is. (Answer = _____ 2). - Next, we add 2 to number in left 3 and write 5. Answer = 52). - Last, we write the left hand most Digit 3 as it is (answer= 352). ### Case - 2: Multiplication three digit number with 11: Example: 652 <u>x11</u> 7172 - First we write the right hand most digit 2 of first number as it is. (Answer =----2). - Next, we add 2 to 5 and write 7. (Answer = 72). - ➤ Then next, we add 5 to 6 and make it 11. we write down 1 and carry over 1. (Answer = _____172). - Last, we take 6 and add the one carried over to mke it 7. (Final answer = 7172) ### Case - 3: Multiplication four digit number with 11: Example: 3102 <u>X 11</u> 34122 - We write down 2 as it is. (Answer=___2). - We add 2 to 0 and make it 2. (Answer is _____22). - > We add 0 to 1 and make it 1. (Answer is _____122) - We add 1 to 3 and make it 4. (Answer is 4122). - We write first digit 3 as it is. (Final Answer is 34122). # Case - 4: Multiplication six digit number with 111: Example: 201432 X 111 ### 22358952 - ➤ We write down 2 in the unit place as it is. (2) - ➤ We move to the left and add(2+3) and write 5. - \triangleright We move to the left and add(2+3+4) and write 9. - \triangleright We move to the left and add(3+4+1) and write 8. - ➤ We move to the left and add(4+1+0) and write 5. - \triangleright We move to the left and add(1+0+2) and write 3. - \triangleright We move to the left and add(0+2) and write 2. - We move to the left and write single digit 2 as it is. - ➤ Final answer 22358952. ## Case - 5: Multiplication six digit number with 1111: Example: 201232 __X_1111 ### 223568752 - We write down 2 in the unit place as it is. (2) - We move to the left and add(2+3) and write 5. - \triangleright We move to the left and add(2+3+2) and write 7. - \triangleright We move to the left and add(2+3+2+1) and write 8. - \triangleright We move to the left and add(3+2+1+0) and write 6. - \triangleright We move to the left and add(1+0+2) and write 3. - ➤ We move to the left and add(0+2) and write 2. - ➤ We move to the left and write single digit 2 as it is. - ➤ Final answer223568752. ### **CRISS-CROSS SYSTEM OF MULTIPLICATION.** - > This is the general formula applicable to all cases of multiplication. - > It means 'Vertically and Cross-Wise'. Case - 1: Multiplication two digit number with two digit number: **Example:** X 43 1978 Step 1: $6 \times 3 = 18$, Write down 8 and Carry 1. Step 2: $4 \times 3 + 6 \times 4 = 12 + 24 = 36$, add to it Previous carry over value 1, so we have 37, Now write down 7 and carry 3. Step 3: $4 \times 4 = 16$, add previous carry over value of 3 to get 19, write it down. So we have 1978 as the answer. Case - 2: Multiplication three digit number with three digit number since **Example:** 103 X 105 10815 Step 1: $3 \times 5 = 15$, Write down 5 and Carry 1. | A | В | C | Step 1: C x F | |---|---|-----|---------------| | D | E | F F | Step 1. C X I | Step 2: $0 \times 5 + 3 \times 0 = 0 + 0 = 0$, add to it Previous carry over value 1, so we have 1, Now write down 1. Step 3: $1 \times 5 + 3 \times 1 + 0 \times 0 = 5 + 3 + 0 = 8$ write it down as 8. Step 3: A x F + C x D + B x E Step 4: $1 \times 0 + 0 \times 1 = 0 + 0 = 0$, Now write it down as 0. Step 2: A x E + B x D Step 5: $1 \times 1 = 1$, Write it down as 1. So we have 10815 as the answer. - > The number of steps used for any multiplication can be found using the formula (2 x no. of digits)-1. - > If there are unequal no. of digits in multiplicand and in multiplier, they should be made equal by inserting 0's at the appropriate places. - > The no. of steps used will be always an odd number. - > In this first and last step, second and second-to-last and so on are mirror images of each other. #### **CONCLUSION:** - > To root out of fear of mathematics with short-cut techniques in Mathematics. - > To improve the quantitative and reasoning ability of all types competitive examination aspirants. - > To improve the speed of Mathematical calculations in not only competitive examination but also all levels of professionals in their daily life. ### Reference: 1) VEDIC MATHEMATICS Text book by Jagadguru Swami BHRATI KRISNA TIRTHAJI MAHARAJA - Sankaracharya of Govardhana Matha, Puri.