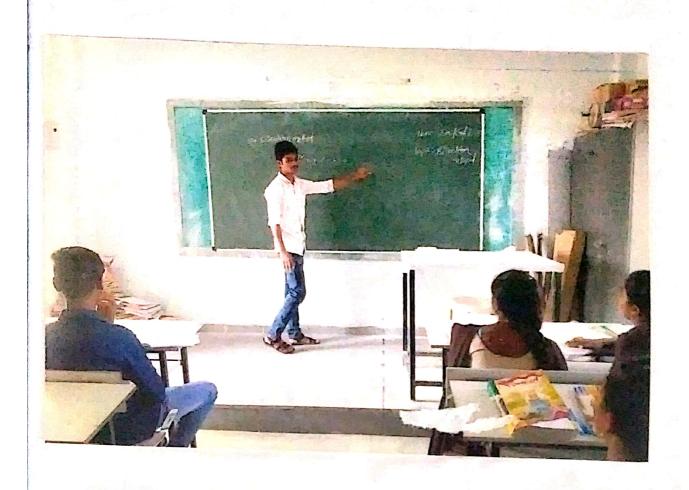


			ALC:		
i	ai	6.1	xf	(ai)	
3	- 1	3.2	2.)	1. 121	
2	2.1	3.2	2.65	0,452125	
3	2.65	3.2	2.925	0.085828125	
(M)	2.925	3.2	3.0625	-0.05443444	
5)	2.925	3.0625	2.99375	5 0.0063278809	
6)	2.99735	Mary 3.0625	3.028125	-0.0165207211	
7)	2.99375	3.028/25	3.010937	5 -0.006969334	
5/	2.99375	3.00234375	2.9980468	75-0.0023327506	
1	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1				
The second secon					
And in contrast of the last of	$ x_{9}-x_{8} \times a_{9}-b_{9} = 2.99375-2.998006875 $ = 0.004296875				
	Since $ x_{9} < \alpha_{9} $, $ x_{9}-x_{8} < x_{9}-x_{8} $ $= \frac{ x_{9}-x_{8} }{ x_{9} } < x_{9}-x_{8} $ So, the approximation $ x_{9}-x_{8} $				
	So, the approximation is correct to atleast				
	within	10^{-2}	15 correct	to atleast	
				100	

20	Name of the Sudent	Signature of the student
	Slc. Rafi	SK-Robi
2	Sk. Bade Shab.	Sk. Badosahob.
3	USha Sangcellia	usha Sangeetha.
4	Nokhe/	Newhil

Result: - Good Teaching abelity

NAME: G. Wha Sangeetha


TOPIC: Bisechan method

DATE : July 25

CLASS: BEC(III), I Seno

(L	Masne of the Sholed.	Sognature of the stale
	SK. Rabi.	SK Lafi
	SK. Badesaheb.	SK-Badesaheb.
	V. Sangoetha.	V. Sangeetsa.
	9. Nikhili	9- Nikhel

Result: Good Teaching
Improve whiting skells.

NAME: - Sk. Rafi

TOPIC: - Bisection method - II

DATE: - Aug 10

CLASS: BSC (III), I Sean

em: Use the Bisection method to find root of = 22-x-3. correct upto thee decimal places.

from: $f(x) = x^2 - x - 3$, so see that f(t) = -3 and f(3) = 3, f(t) + f(3) < 0 Hence $a_1 = 1$, $b_1 = 3$.

ai	6°	Z;	f(ai)
1	3	2	-1
ર	.3	2.5	0.7500
2	2.5	2.25	-0.1875
2.25	2-5	2.375	0.2656
2.25	2-375	-2-3M	0.0352
2.288	2.3125	2.2813	-0.0771
Q-2813	2.3125	2.2969	.0.0212
2-2969	2.315	2-3047	0.0069
2.2969	2.3047	2-3008	-0.0072
2.3008	2-3047	2.3027	-0.0001
9-3027	2.3047	.2.3037	0.0034
2-3027	23037	2.3032	0.0016

1711-712/50.0001

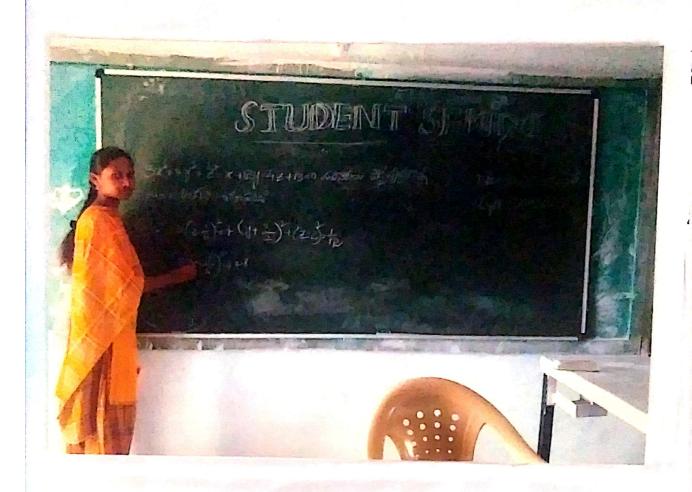
=> 3.3037+2.3032 = 2 30345. As the soof

No	Name of The Student	Signature of the Study
	Su. Rabi	Sk-Rabi
	V. Sungeetha.	V. Smgeetta.
	G. Nikhil	9. Nikhil
	SK. Badesaheb.	8x. Badesahob.
	1	

* Good Teachuring abolity

* Good Welling Skells on board

to find the equation of the 5) ct verstexis the point. (a.p. generatora interect the conic. ax2 + 2 hay + by2 + 2 gx have to find the locus of F & through the given point (de given curve. ations to any line through (2-9 7-F


my will be a generator of the intersects the given curve.

th

th

lii

1		
Sc.	Masone of the Gudes-	Signature of the shot
1	SK-Rabi.	& Rabil
2	SK-Badesaheb.	8x. BadeSaheb.
3	G- Nikhik	g. Nikhal
4	V. Sangeetha.	V. Sangeetha.
26.		

NAME: G. USha Sangeetta

TOPIC: Coincoides

DATE: - oct-1

class: BSC (III), Il Sem

is meets the surface in the points (91016 1 whereas the yand = - axes do not m

ection by the planes 2= 15 and 9=15 aret 25

三学二十些一天一美二十年

ply

ane a=k does not meet the sulface if no portion of the surface between an p

x = -9, 7 = 9

i i, e when KygorK = - 9 1 the plane the Surbace in the ellipse

Pse in Crease in State as a in calegoes

20	Name of the Student-	Sugnature of the
	SK. Bade Saheb.	84. Rafi
	G. Mikhed	G-Nichel
	V. Sangeetta.	V-Sangeethy.
	BK. Rabi	Ex Rafi

- Good Teaching

 Imporce Voice.

 Imporce Wretling Skills.

NAME: - SK. Bade Sahab.

DATE: Feb-5

CLASS: BS((III), VI Sem)

lem. A sphere of constant radius in payses throught the origin and cuts the axes in AB and e find the locus of the centroid of the triangle ABC.

A sphere of constants of AIB And cbe (a.o.o) o, b. o) and (o.o.c) respectively. The sphere also à ssel through the origin (0,0,0) it the equation of the sphere be x2+y2+22+2ux+2vx+2wt+d=0.

it passes through (0.0.0). (0.0.0), (0.6.0) And (0.0.0)

 $a^2 + 2ua + d = 0 = 1$ $u = -\frac{1}{2}a_1 v_2 - \frac{1}{2}b_1 w_2 - \frac{1}{2}c_1$

· Required equation of sphere is

x2+y2+22-ax-by-(2=0.

> radius = $\left(\frac{1}{2}a\right)^2 + \left(\frac{1}{2}b\right)^2 + \left(\frac{1}{2}c\right)^2 = K$

2+62+c2 = MK2-

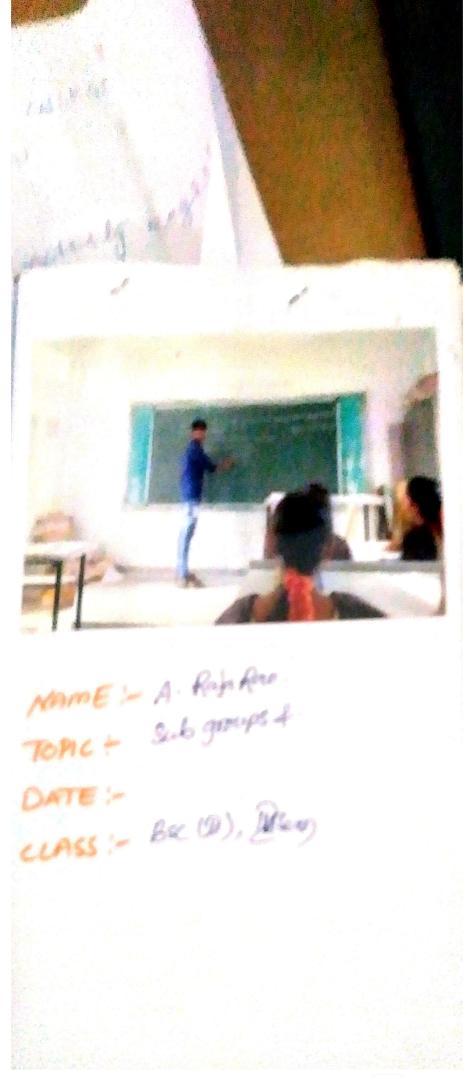
Topic : Signated pollochow in incomo : Proof 8- 'G' los ಸಮಾಹಾರ - Gರುತ್ತುರುತ್ತು. ನಂತ್ರಾ ba = co a කිවෙන කව්ත්යා a' රූතර් a' p කුරාවුණු හා අවසිබුණ ස්ස්විතයා ස්ක්ෂා (ba) a' = (ca) a' E . . da b(aa') = c (aa') C .: ca b.1 = C.1 a b=c 0 19 කුගමුණුග බස්ත්වුණ අගමුගේ ප්රේ ip) ab = ac a'(ab) - a'(ac) (a'a) b = (a'a) c 1.6=1.0 1 b=c · 6 62 දාවාගතා දිලිල් තුරිත්ත දිලිලේ

NAME: K. Bhavani

Tople: - Cancellation Laws.

DATE: 19-2-2019

CLASS: - BSC (II), That Sem


-1 100

NAME: K. Bhayani Topic: - Cancellation Laws DATE: - 19-2-2019 CLASS: BSC (II), I I'm Sem

S. Ribkha Cancelladion laws. NAME: TOPIC:-March-5 BSC (II), M Sem CLASS :-

Madaurin's theorem & Stratement & let f: [a, b] -> R such that City por is continuous on [0, h] (i) ip is differentiable on (o,h). (iii) Pisa Positive Integer. f → x ∈ (0, h) =) f(x) = f(0) + 7. p(0) + 1/21, f(0) + · · · + $\frac{1}{2(n-1)!}$ $p^{n-1}(0)$ + n^{n} . $\frac{(1-0)^{n-1}}{p^{n}}$ $p^{n}(0x)$ Proof & Given that from ea (1). f. f. fr. fr. fr. fs continuouson Fo, h) derech p: [ash] -> R define by $\phi(x) = f(\pi) + (a+h-x) + f(x) + \frac{(a+h-x)}{2!} + \frac{(a+h-x)}{2!}$ $+ \frac{(a+h-x)^{n-1}}{n-1} f(x) + A (a+h-x) =$ put n=a in ca O. $\varphi(a) = f(a) + h f(x) + \frac{h}{n!} f(x) + \dots + \frac{h^{n-1}}{n-1} f(a) + \dots$ + A(h)P = f(a+h) -> 0. 1) \$ is continuous ii) & is differentiable.

 $\phi(a) = \phi(a+h)$

p is satisfies all the conditions of the Rollet theorem. FICE (a, ath) =) Ø(cc)=0.

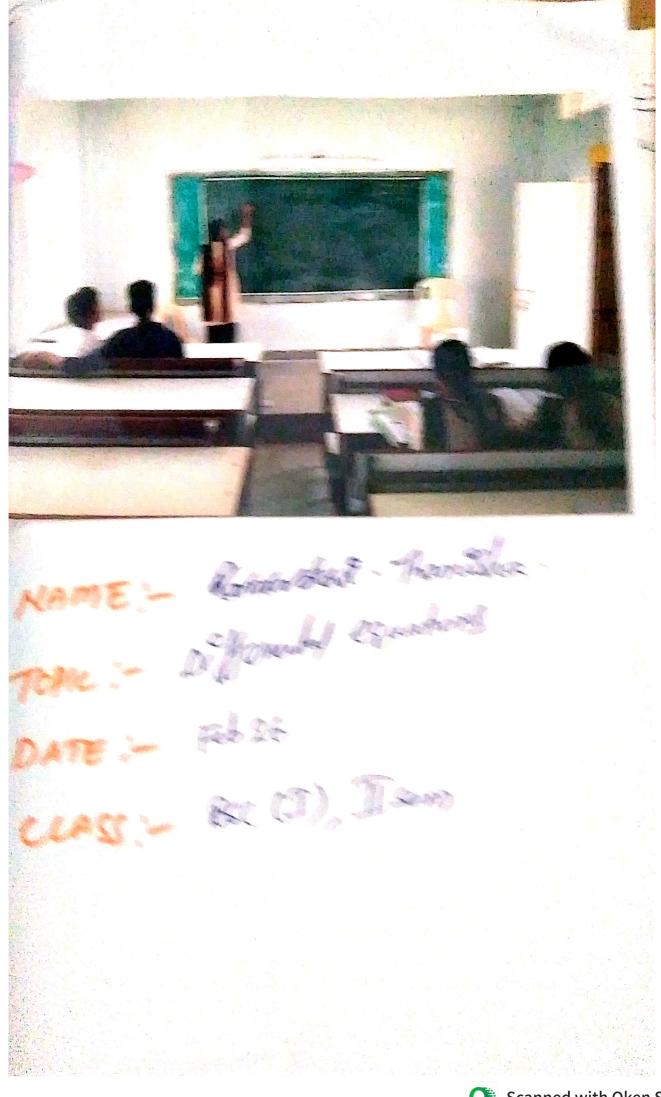
Student Seminou NAME = J. Pavani Garage = 1. B.SC [M.p.] Subject = maths Subject := Variation of Pagmeters.

NAME: G. Pavani TODIC: - GOOUPS & Differentation DATE: - Jon 28 CLASS: - BSC (I)

The given equation is xy' - 4xy' + 6y = 0 D' 1 + aoy = 0.

$$a_0 = x^2, \quad a_1 = -4x, \quad a_0 = 6$$

$$u(x) = \frac{e^{-\frac{1}{2}a_1}dx}{y^2}$$


$$= \frac{e^{-\frac{1}{2}a_2}dx}{x^4}$$

$$U(x) = \frac{x^4}{x^4}$$

$$U(x) = 1$$

4,04 The Time canation is Company ea a do do ger 00= x , a = . u(1) = 6 1%. = e 1-4 U(1) = 2+ 4(x) = 1 42(x) = 4,(x) /1 = x /101 42(2) = 23 y = ay, + Ce42 : 4 = at + C273

The Stu s sharloge M. sendhy Ho Sallaga V. Ramadeul J. Pavani P. Anjali B. Prashaidly MD. ARIF P. Rajesh Rakesh

dy +y tana = y3 secx. solo The given enteation dy care-lion Care-lion of the 17 turn of seconds bearalice 1 dy ty tonz = Secx 43 dx + tanx = secq. - 3 2 = /g2 dt = -2/3 dy/dx. -1/2 dz - 1/3 dx from evertion (2) -1/2 dt + (tan x) 2 = Secx. dt -22 lanx = 25ccx. This is Linear excelion in 2' P= -2 tarx a= -2 secx. I.F = esph = es-2 secz = e-2log secx = elog Sec x = Secz=2 = 5002x = 0052x

(D3-07-60)y = x7+1 $fan (D^3 - D' - 6D)y = x'+1 \rightarrow 0$ q(m)=0 $(m^3-m^2-6)y=x^4|$ m(m'-m-6)=0m=0, $m^2-m-6=0$ m-3m+2 =0. m(m-3) + 2(m-3) = 0(m-3) (m+2)=0Jc = 9eor + 62e2+63e37 (x+1) yp D3-D1-60 03-04-60 D3-01-60 -6[1+(03-0)] -6[1+(03-0)] -60[1-(03-07)] x + 1 ED [1+ (03-0) + (03-8)] }

NAME: Ramadevi class: - Bsc(I) march 12 Gart Deares -Graduate Access to the law Topic: Euler's method 16/2012/13/19/19 DATE: - It sem

Then show that or dy ty du = tan

2 = sinu = [av+y]

2 = sinu = [av+y]

8inu=9 = n [(+(4/21))
9((1+4/2)

2= nif(y/x)

n=1

- Jam ealers - theorem.

カナナタサー272

or of (Pinu) + y of (Pinu)= 1. Sinu.

or cosu ty + y cosu tu = sinu.

of the ty ty = since work.

ndu tydy z tanu

STUDENT SEMINARS

