GIRRAJ GOVERNMENT COLLEGE (A), NIZAMABAD

Department of Chemistry BOS

SYLLABUS

M.Sc. (ORGANIC CHEMISTRY)

<u>https://drive.google.com/file/d/1-</u> <u>9XHELkXgh1rR6ITe3o4Cj3LFifNqnPZ/view?usp=sharing</u>

UG CHEMISTRY

I to IV SEMESTER SYLLABUS

https://drive.google.com/file/d/1-F8db-cmvsXe83x-X0Mam_niXtbjrflg/view?usp=sharing

V,VI SEMESTER SYLLABUS

https://drive.google.com/file/d/1-Hc1hbbGHBkdiGJhJb7Jls1l6waqFVQ5/view?usp=sharing

Programme Outcomes

- Knowledge, Understanding, Application, Skills, Appreciation of Chemistry
- Systematic Scientific Thinking
- Environment Protection through Green Chemistry
- Inculcation of Scientific Temper

Programme Specific Outcomes

- Theory & Practicals
- Knowledge of Reactions
- Problem Solving
- Skill Enhancement
- Research Attitude

COURSE OUTCOMES

<u>Programme:</u> B.Sc Chemistry

SEMESTER – I, Paper – I

UNIT	Course Outcome
	At the end of the course students will be able to :
I – Organic	\rightarrow Learn to draw the molecular orbital energy diagrams
Chemistry	\rightarrow Understand the structure, synthesis of compounds of p-block
	elements
II – Organic	\rightarrow Study of bond polarization – effects – applications
Chemistry	\rightarrow Learn the reaction mechanism of aromatic hydrocarbons
	\rightarrow Have an idea about the classical mechanics
III Dhysical	\rightarrow Derive the relation between critical and Vanderwaal's constant
Chemistry	\rightarrow Understand the structural differences between solids, liquids
	and gases
	\rightarrow Differentiate between the ideal and Non-ideal solutions
	\rightarrow Learn the chemistry behind the cation and anion analysis
IV – General	\rightarrow Able to draw the conformational isomers of different
Chemistry	compounds
	→Derive Bragg's Equation

SEMESTER – II, Paper – II

UNIT	Course Outcome
	At the end of the course students will be able to :
I Organia	\rightarrow Learn the structure, hybridization of oxides, oxyacids of p-
I – Organic Chomistry	block elements
Chemistry	\rightarrow Know the anomalous behavior of He (II)
	\rightarrow Understand the characteristic properties of d-block elements
II – Organic	\rightarrow Learn the reaction mechanisms of reactions involved in halogen
Chemistry	compounds, Hydroxy compounds and carbon compounds
III Dharainal	\rightarrow Understand the electrical transport concept, determination of
Chomistry	transport numbers.
Cnemistry	\rightarrow Solve the problems related to cell EMF
	\rightarrow Differentiate between Volumetric analysis and Gravimetric
IV – General Chemistry	analysis
	\rightarrow Learn the symmetry of Chiral molecules
	\rightarrow Draw the R,S-Configuration
	\rightarrow Solve the problems of colligative properties

SEMESTER – III, Paper – III

UNIT	Course Outcome
	At the end of the course students will be able to :
I – Organic	\rightarrow Learn the Chemistry of Lanthanides and actinides
Chemistry	\rightarrow Learn the concept of symmetry elements in molecules
	\rightarrow Learn the characteristics of a solvent used in chemical reactions
II – Organic	\rightarrow Understand the reaction mechanisms of important reactions of
Chemistry	Alcohols, ethers, Carbonyl Compounds
III – Physical	\rightarrow Study the phase diagram of various systems
Chemistry	\rightarrow Understand the applications of colloids and adsorption
W. Comonal	\rightarrow Know about the general applications of nano materials
IV – General	\rightarrow Understand the stereochemistry of carbon compounds
Chemistry	\rightarrow Learn about the conformational analysis of organic molecules

SEMESTER – IV, Paper – IV

UNIT	Course Outcome
	At the end of the course students will be able to :
I – Organic	→Learn Werner's diagrams of complexes, Application of VBT
Chemistry	and isomerism in coordination compounds
	\rightarrow Know about the 18 electron rule
II – Organic	\rightarrow Learn the reaction mechanism of important reactions of
Chemistry	carboxylic acids, Nitro hydrocarbons
III – Physical	\rightarrow Solve the problems of Cell EMF
Chemistry	\rightarrow Calculate the thermodynamics quantities of cell reaction
	\rightarrow Know different types of peri cyclic reactions
IV – General Chemistry	\rightarrow Gain the knowledge of different terms used in synthesis of
	molecule.
	\rightarrow Differentiate between stereo selective and stereo specific
	reactions.

SEMESTER – V, Paper – V

UNIT	Course Outcome
	At the end of the course students will be able to :
I Ougania	\rightarrow Understand the Splitting patterns of d-orbitals
Chemistry	\rightarrow Know about the magnetic properties and electronic spectra of
	metal complexes
	\rightarrow Apply the wade's rules
II – Organic	→Learn the reactions of Amines
Chemistry	\rightarrow Know the importance of Hetero cyclic as drugs
III – Physical	\rightarrow Solve the problems of different order of reactions
Chemistry	\rightarrow Understand the effect of temperature on reaction rate
IV – General	→Get exposed to different spectroscopy techniques
Chemistry	\rightarrow Learn the laws of Photochemistry, Quantum efficiency

SEMESTER – V, Paper – VII

UNIT	Course Outcome
I – Chromatography Techniques	At the end of the course students will be able to : \rightarrow Learn about different chromatographic techniques and their applications in research
II – Spectro Photometry & Colorimetry	→Understand the importance of Spectro photometry in present research applications
III – Electro analytical methods	→Learn about potentiometry, Voltametry, different types of conductivities

SEMESTER – VI, Paper – VI

UNIT	Course Outcome
	At the end of the course students will be able to :
LO	\rightarrow Differentiate labile and inert complexes
I – Organic	\rightarrow Learn applications of Transeffect
Chemistry	\rightarrow Understand the biological significance of essential elements
	\rightarrow Understand the concept of pearson theory
II Organia	\rightarrow Draw the structure of Glucose, Fructose and do the inter
II – Organic Chemistry	conversions of mono saccharides
	\rightarrow Learn the synthesis of amino acids, structure of proteins
	→Learn laws of Thermodynamics
III – Physical	\rightarrow Derive the expressions related to maximum work of
Chemistry	isothermal reversible process
	\rightarrow Solve the problems
	\rightarrow Learn about the proton magnetic resonance spectroscopy,
IV – General	mass spectroscopy – principle and applications
Chemistry	\rightarrow Learn about entropy, Carnot's cycle, Gibb's Equation,
	Maxwell's relations

SEMESTER – VI, Paper – VII

UNIT	Course Outcome
I – Introduction Terminology & Enzymes	At the end of the course students will be able to : →Learn about different types of diseases → Know the different terms used in medicinal Chemistry →Understand the absorption of drugs across the membrane →Learn the mechanism and factors affecting enzyme action.
II – Receptors synthesis Therapeutic activity of drugs	 →Know the mechanism of drug action →Learn the synthesis and therapeutic activity of drugs →Identify the drugs to treat metabolic disorders, drugs acting on nervous system
III – Molecular messengers and Health promoting drugs	 → Learn about the hormones and neurotransmitters →Know about the deficiency disorders of Vitamins and Micronutrients.

COURSE OUTCOMES

PROGRAMME: M.Sc (ORGANIC CHEMISTRY)

SEMESTER – I

Paper	Course Outcomes
	At the end of the course student will be able to:
	\rightarrow Learn concept of Symmetry elements in molecules.
CH 101 T –	\rightarrow Find out the point group of inorganic molecules
Inorganic	\rightarrow To know the preparation and properties of transition metal
Chemistry	carbonyls
	\rightarrow To understand the splitting of d-orbitals and bonding in metal
	complexes.
	\rightarrow Determination of configuration in E,Z-isomers
СН102 Т –	\rightarrow Learn about the electrophilic addition, elimination reactions
Organic	\rightarrow Determination of amino acid sequence in polypeptides by end
Chemistry	group analysis and structure elucidation of sucrose
	\rightarrow Importance of heterocyclic compounds as drug
	\rightarrow Learn about the laws of thermodynamics and thermodynamics
СН103 Т –	relations.
Physical	\rightarrow Applications of EMF measurements, concept of activity and
Chemistry	activity coefficients in electrolytic solutions
	\rightarrow Know different theories of reaction rates
СН104 Т	\rightarrow Learn about the different chromatographic techniques
Analytical	\rightarrow HNMR of organic molecules and metal complexes
Toobniquos	\rightarrow Learn about microwave spectroscopy, Vibrational and Raman
and	Spectroscopy and it's applications
allu	\rightarrow Electronic Spectra, types of electronic transitions Beer's law
spectroscopy	applications.

SEMESTER – II

Paper	Course Outcomes
	At the end of the course student will be able to:
	\rightarrow Concept of ligand substitution reactions and electron transfer
CH 201 T –	reactions
Inorganic	\rightarrow Learn the effect of weak cubic crystal fields on S, P, D, F
Chemistry	terms.
-	\rightarrow Know the preparation of metal clusters
	\rightarrow Get the knowledge of metal ions in biological systems.
	\rightarrow Learn the conformational isomerism and concept of dynamic
	stereochemistry
СН202 Т –	\rightarrow Concept of nucleophilic aromatic substitution, Electrophilic
Organic	substitutions
Chemistry	\rightarrow Gain the knowledge about different reactive intermediate and
	molecular rearrangements
	\rightarrow Structure determination and synthesis of natural products.
	\rightarrow Study of Photochemistry reactions, application of
СН203 Т –	photochemical reaction
Physical	\rightarrow Comparison of classical and quantum mechanical particles
Chemistry	\rightarrow Study of electronic properties of metals, insulation and
	semiconductors.
СН204 Т –	
Analytical	\rightarrow Learn about the different analytical techniques, solid state
Techniques	NMR Spectroscopy, Mass spectroscopy, Photo electron and ENR
and	Spectroscopy – Principle, instrumentation techniques.
Spectroscopy	

SEMESTER – III

Paper	Course Outcomes
CH (OC) 301 T- Conformational Analysis, Asymmetric Synthesis and Bio molecules	 At the end of the course student will be able to: →Learn about the Conformational structures of cyclic systems. →Understand the strategies in Asymmetric synthesis. →Study of enzymes, nucleic acids and lipids.
CH (OC) 302 T - Modern organic synthesis	 →Study of different synthetic reagents. →Learn the new synthetic reactions →Gain the knowledge of new techniques and concepts in organic synthesis.
CH (OC) 303 T - Organic Spectroscopy and Pericyclic reactions	 →Application of ¹³C NMR Spectroscopy →Understood the 2D-NME techniques and applications →Learn the Pericyclic reactions, classifications →To solve the problems based on FMO approach.
CH (OC) 304 T - Photochemistry, Synthetic strategies and Green Chemistry	 →Synthetic strategies – Terminology and retro synthetic approach →Principles of green chemistry and alternative approaches

SEMESTER – IV

Paper	Course Outcomes
CH (OC) 401 T -	At the end of the course student will be able to:
Drug design and	\rightarrow Learn about the principles of drug design and drug
Drug Discovery	discovery.
	\rightarrow Quantitative structure and activity relationship studies.
	\rightarrow Study the combinatorial chemistry.
CH (OC) 402 T -	\rightarrow Understand the action of drug on metabolic process, cell
Drug synthesis	wall and on specific enzymes
and mechanism	\rightarrow Learn how the drugs act on genetic material and on immune
of action	system
	\rightarrow Study the different types of receptors and how drugs act on
	them.
CH (OC) 403 T -	\rightarrow Know more about the synthesis and reactivity of non
Advanced	aromatic heterocyclic larger ring hetero cycles.
Heterocyclic	
Chemistry	
CH (OC) 404 T -	\rightarrow Learn about the biosynthesis, stereo chemistry structure
Advanced	determination and spectral methods of natural products.
Natural Products	

BOS Meeting Links

2016-17

https://drive.google.com/file/d/1-n0C6bT87yhWEG4eT93sCF6SAyhtaYfI/view?usp=sharing

2018-19

https://drive.google.com/file/d/1-kC_PgbeG6kT75hi1sexKct-hMN2ocQ6/view?usp=sharing

2019-20

https://drive.google.com/file/d/1-e5WJXe4ZHCDY8MBO9P1nmSWpx49y7iZ/view?usp=sharing

2020-21

https://drive.google.com/file/d/1-YcU7Q-RZVUhaHVauDMwW0R2IMLTXYKB/view?usp=sharing

2021-22

https://drive.google.com/file/d/1-YKnotAKyTdPuvk7tRm5h8zln0VxQNA_/view?usp=sharing