Telangana State Council of Higher Education, Govt. of Telangana B.Sc., CBCS Common Core Syllabi for all Universities in Telangana PROPOSED SCHEME FOR CHOICE BASED CREDIT SYSTEM IN

B.Sc., Chemistry from 2019-2020

	FIRST YEAR- SEMESTI			
CODE	COURSE TITLE	COURSE	HPW	CREDITS
		TYPE		
BS 101	Ability Enhancement Compulsory Course AECC-1	ES	2	2
BS 102	English	CC-1A	4	4
BS 103	Second language	CC-2A	4	4
BS 104	Optional I	DSC-1A	4T+3P=7	4+1=5
BS 105	Optional II	DSC-2A	4T+3P=7	4+1=5
BS 106	Optional III- Chemistry - I		4T)	4
	Laboratory Course – I	DSC-3A	\ \ = 7	├ =5
	(Qualitative Analysis - Semi Micro Analysis of Mixtures)		3P J	1 ⁻
	Total Credits		31	25
	FIRST YEAR- SEMSTE	R II		
BS 201	Ability Enhancement Compulsory Course AECC-2	BCS	2	2
BS 202	English	CC-1B	4	4
BS 203	Second language	CC-2B	4	4
BS 204	Optional I	DSC-1B	4T+3P=7	4+1=5
BS 205	Optional II	DSC-2B	4T+3P=7	4+1=5
BS 206	Optional III- Chemistry - II			
	Laboratory Course - II	DSC-3B	4T)	4
	(Quantitative Analysis – Titrations)		\rightarrow = 7	├ =5
			3P	1
	Total Credits		31	25
	SECOND YEAR- SEMSTE	ER III	1	
BS 301	i) Safety Rules in Chemistry Laboratory and Lab Reagents	SEC-1	2	2 2
	ii) Remedial methods for pollution, drinking water and	SEC-2	2	2
	Soil fertility			
BS 302	English	CC-1C	3	3
BS 303	Second language	CC-2C	3	3
BS 304	Optional I	DSC-1C	4T+3P=7	4+1=5
BS 305	Optional II	DSC-2C	4T+3P=7	4+1=5
BS 306	Optional III- Chemistry - III			
	Laboratory Course - III		4T]	4
	(Synthesis of Organic compounds)	DSC-3C	\ \rightarrow = 7	=5
			3P ^J	1
	Total Credits		31	25
	SECOND YEAR- SEMSTI	1	ı	1
BS 401	i) Materials and their Applications	SEC-3	2	2
	ii) Chemistry of Cosmetics and Food Processing	SEC-4	2	2
BS 402	English	CC-1D	3	3
BS 403	Second language	CC-2D	3	3
BS 404	Optional I	DSC-1D	4T+3P=7	4+1=5
BS 405	Optional II	DSC-2D	4T+3P=7	4+1=5
BS 406	Optional III- Chemistry - IV		4T]	4 7
	Laboratory Course - IV	DSC-3D	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	├ = 5
	(Qualitative Analysis of Organic Compounds)		3P ^J	1 -
	Total Credits		31	25

^{*} AECC: Ability Enhancement Compulsory Course, SEC: Skill Enhancement Course, DSC: Discipline Specific

Course, GE: Generic Elective, ES: Environmental Science, BCS: Basic computer skills.

B.Sc. I Yr CHEMISTRY SEMESTER WISE SYLLABUS

SEMESTER I

Paper – I Chemistry - I

Unit-I (Inorganic Chemistry) S1- I-1. Chemical Bonding

15 h (1 hr/week)

8 h

Ionic solids- lattice and solvation energy, solubility of ionic solids, Fajan's rule, polarity and polarizability of ions. VSPER Theory - Common hybridization-sp, sp², sp³, sp³d, sp³d² and sp³d³, shapes of molecules. Molecular orbital theory: Shapes and sign convention of atomic orbitals. Modes of bonds. Criteria for orbital overlap. LCAO concept. π and σ overlapping. Concept of Types of molecular orbitals- bonding, antibonding and non bonding. MOED of homonuclear diatomics - H₂, N₂, O_2^- , O_2^{2-} , F₂ (unhybridized diagrams only) and heteronuclear diatomics CO, CN^- , NO, NO^+ and HF. Bond order, stability and magnetic properties.

S1-I-2. P-Block Elements 1

7 h

Group-13: Structure of diborane and higher Boranes (B₄H₁₀ and B₅H₉), Boron nitrogen compounds (B₃N₃H₆ and BN), Lewis acid nature of BX₃. Group -14: Carbides-Classification - ionic, covalent, interstitial - .Structures and reactivity. Industrial applications. Silicones - Classification - straight chain, cyclic and cross-linked. Group -15: Nitrides - Classification - ionic, covalent and interstitial. Reactivity - hydrolysis. Reactions of hydrazine, hydroxyl amine, phosphazenes.

Unit - II (Organic Chemistry)

15h(1 hr/week)

S1-O-1: Structural Theory in Organic Chemistry

5 h

Bond polarization: Factors influencing the polarization of covalent bonds, electro negativity – inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity of carboxylic acids (c) Stability of carbonium ions. Resonance - Mesomeric effect, application to (a) acidity of phenol. (b) acidity of carboxylic acids and basicity of anilines. Stability of carbo cations, carbanions and free radicals. Hyper conjugation and its application to stability of carbonium ions, free radicals and alkenes.

S1-O-2: Acyclic Hydrocarbons

6 h

Alkanes– Methods of preparation: From Grignard reagent, Kolbe synthesis. Chemical reactivity - inert nature, free radical substitution, Halogenation example- reactivity, selectivity and orientation.

Alkenes - Preparation of alkenes (with mechanism) (a) by dehydration of alcohols (b) dehydrohalogenation of alkyl halides (c) by dehalogenation of 1,2 dihalides, Zaitsev's rule. Properties: Anti-addition of halogen and its mechanism. Addition of HX, Markonikov's rule, addition of H₂O, HOX, H₂SO₄ with mechanism and addition of HBr in the presence of peroxide (anti – Markonikov's addition). Oxidation (cis – additions) – hydroxylation by KMnO₄, OsO₄,

anti addition- peracids (via epoxidation), hydroboration, ozonolysis – location of double bond. Dienes – Types of dienes, reactions of conjugated dienes – 1,2 and 1,4 addition of HBr to 1,3 – butadiene and Diels – Alder reaction.

Alkynes— Preparation by dehydrohalogenation of vicinal dihalides, dehalogenation of tetrahalides. Physical Properties: Chemical reactivity — electrophilic addition of X_2 , HX, H_2O (tautomerism), Oxidation (formation of enediol, 1,2 diones and carboxylic acids) and reduction (Metal-ammonia reduction, catalytic hydrogenation).

Aromatic Hydrocarbons

4h

Introduction to aromaticity: Huckel's rule – Benzene, Naphthalene and Anthracene. Reactions - General mechanism of electrophilic substitution, mechanism of nitration, sulphonation and halogenation, Friedel Craft's alkylation and acylation. Orientation of aromatic substitution - Definition of ortho, para, and meta directing groups. Ring activating and deactivating groups with examples. Orientation – (i) activating groups: Amino, methoxy and alkyl groups. (ii) Deactivating groups - nitro, nitrile, carbonyl, carboxylic acid, sulphonic acid and halo groups.

Unit – III (Physical Chemistry)

15h(1 hr/week)

S1-P-1: Atomic structure and elementary quantum mechanics

3 h

Black body radiation, heat capacities of solids, Rayleigh Jeans law, Planck's radiation law, photoelectric effect, Limitations of classical mechanics, Compton effect, de Broglie's hypothesis. Heisenberg's uncertainty principle.

S1-P-2: Gaseous State 5 h

Deviation of real gases from ideal behavior. van der Waals equation of state. Critical phenomenon. PV isotherms of real gases, continuity of state. Andrew's isotherms of CO₂. The van der Waal's equation and critical state. Derivation of relationship between critical constants and van der Waal's constants. The law of corresponding states, reduced equation of states. Joule Thomson effect and inversion temperature of a gas. Liquifaction of gases: i) Linde's method based on Joule Thomson effect ii) Claude's method based on adiabatic expansion of a gas.

S1-P-3: Liquid State and Solutions Liquid State

4 h

Intermolecular forces, structure of liquids (qualitative description). Structural differences between solids, liquids and gases. Surface tension and its determination using stalagmometer. Viscosity of a liquid and determination of coefficient of viscosity using Ostwald viscometer. Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only).

Solutions 3 h

Liquid - liquid mixtures, ideal liquid mixtures, Raoult's and Henry's laws. Non ideal systems. Azeotropes: HCl-H₂O and C₂H₅OH - H₂O systems. Fractional distillation. Partially miscible liquids: Phenol – Water, Trimethyl amine – Water and Nicotine – Water systems.

Unit - IV (General Chemistry)

15h(1 hr/week)

S1-G-1. General Principles of Inorganic Qualitative Analysis

6 h

Anion analysis: Theory of sodium carbonate extract, classification and reactions of anions- CO_3^{2-} , Cl^- , Br^- , SO_4^{2-} , PO_4^{3-} , BO_3^{3-} , CH_3COO^- , NO_3^- . Interfering ions. Cation Analysis: Principles involved - Solubility product, common ion effect, general discussion for the separation and identification of group I individual cations $(Hg_2^{2+}, Ag^+, Pb^{2+})$ with flow chart and chemical equations. Principle involved in separation of group II & IV cations. General discussion for the separation and identification of group II $(Hg^{2+}, Pb^{2+}, Bi^{3+}, Cd^{2+}, Sb^{3+})$, III (Al^{3+}, Fe^{3+}) , IV (Mn^{2+}, Zn^{2+}) individual cations with flow chart and chemical equations. General discussion for the separation and identification of group V individual cations $(Ba^{2+}, Sr^{2+}, Ca^{2+})$ with flow chart and chemical equations. Theory of flame test. Identification of Group VI cations (Mg^{2+}, NH_4^+) .

S1-G-2. Isomerism 5 h

Isomerism: Definition of isomers. Classification of isomers: Constitutional and Stereoisomers - definition and examples. Constitutional isomers: chain, functional and positional isomers. Stereoisomers: enantiomers and diastereomers – definitions and examples. Representation of stereoisomers – Wedge, Fischer projection, Sawhorse, Newmann formulae.

Conformational analysis: Classification of stereoisomers based on energy. Definition and examples Conformational and configurational isomers. Conformational analysis of ethane, n-butane, 1,2- dichloroethane,2-chloroethanol .Cyclic compounds: Baeyer's strain theory, Conformational analysis of cyclohexane

Cis-trans isomerism: E-Z-Nomenclature

S1-G-3: Solid state Chemistry

4 h

Laws of Crystallography: (i) Law of Constancy of interfacial angles (ii) Law of Symmetry-Symmetry elements in crystals (iii) Law of rationality of indices. Definition of space lattice, unit cell. Bravais Lattices and Seven Crystal systems (a brief review). X-ray diffraction by crystals; Derivation of Bragg's equation. Determination of structure of NaCl, KCl and CsCl (Bragg's method and Powder method).

References

General reference: B.Sc I Year Chemistry : Semester I, Telugu Academy publication, Hyd **Unit- I**

- 1. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications 1996.
- 2. Concise Inorganic Chemistry by J.D. Lee 3rd edn.
- 3. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus 3rd edn Wiley Publishers 2001. Chem.

- 5. Inorganic Chemistry Principles of structure and reactivity by James E.Huhey, E.A. Keiter and R.L. Keiter 4th edn.
- 6. Chemistry of the elements by N.N.Greenwood and A. Earnshaw Pergamon Press 1989.
- 7. Inorganic Chemistry by Shriver and Atkins 3rd edn Oxford Press 1999.
- 9. Textbook of Inorganic Chemistry by R Gopalan.

Unit-II

- 1. Organic Chemistry by Morrison and Boyd.
- 2. Organic Chemistry by Graham Solomons.
- 3. Organic Chemistry by Bruice Yuranis Powla.
- 4. Organic Chemistry by L. G. Wade Jr.
- 5. Organic Chemistry by M. Jones, Jr
- 6. Organic Chemistry by John McMurry.
- 7. Organic Chemistry by Soni.
- 8. General Organic chemistry by Sachin Kumar Ghosh.
- 9. Organic Chemistry by C N pillai

Unit III

- 1. Principles of physical chemistry by Prutton and Marron.
- 2. Text Book of Physical Chemistry by Soni and Dharmahara..
- 3. Text Book of Physical Chemistry by Puri and Sharma.
- 4. Text Book of Physical Chemistry by K. L. Kapoor.
- 5. Physical Chemistry through problems by S.K. Dogra.
- 6. Text Book of Physical Chemistry by R.P. Verma.
- 7. Elements of Physical Chemistry by Lewis Glasstone.

Unit IV

- 1. Qualitative analysis by Welcher and Hahn.
- 2. Vogel's Qualitative Inorganic Analysis by Svehla.
- 3. Text Book of Organic Chemistry by Morrison And Boyd.
- 4. Text Book of Organic Chemistry by Graham Solomons.
- 5. Text Book of Organic Chemistry by Bruice Yuranis Powla.
- 6. Text Book of Organic Chemistry by Soni.
- 7. Text Book of Physical Chemistry by Soni And Dharmahara..
- 8. Text Book of Physical Chemistry by Puri And Sharma.
- 9. Text Book of Physical Chemistry by K. L. Kapoor.

Laboratory Course

45h (3 h / week)

Paper I - Qualitative Analysis - Semi micro analysis of mixtures

Analysis of two anions (one simple, one interfering) and two cations in the given mixture.

Anions:
$$CO_3^{2-}$$
, SO_3^{2-} , S^{2-} , Cl^- , Br^- , I^- , CH_3COO^- , NO_3^- , PO_4^{3-} , BO_3^{3-} , SO_4^{2-} . Cations: Hg_2^{2+} , Ag^+ , Pb^{2+}

Eations.
$$Hg_2$$
, Hg , Hg , Hg^{2+} , Hg^{2+} , Hg^{2+} , Hg^{3+} , Hg

$$Al^{3+}$$
, Cr^{3+} , Fe^{3-}

$$Zn^{2+}, Ni^{2+}, Co^{2+}, Mn^{2+}$$

$$Ba^{2+}$$
, Sr^{2+} , Ca^{2+}

$$Mg^{2+}, NH_4^+$$

B.Sc I Yr CHEMISTRY SEMESTER WISE SYLLABUS

SEMESTER II

Paper – II Chemistry – II

Unit-I (Inorganic Chemistry)

15 h (1 hr/week)

7 ł

S2-I-1 P-block Elements -II

Oxides: Types of oxides (a) Normal- acidic, basic amphoteric and neutral (b) Mixed (c) sub oxide d) peroxide e) superoxide. Structure of oxides of C, N, P, S and Cl - reactivity, thermal stability, hydrolysis.

Oxy acids: Structure and acidic nature of oxyacids of B, C, N, P, S, Cl and I. Redox properties of oxyacids of Nitrogen: HNO_2 (reaction with FeSO₄, $KMnO_4$, $K_2Cr_2O_7$), HNO_3 (reaction with H_2S , Cu), HNO_4 (reaction with KBr, Aniline), $H_2N_2O_2$ (reaction with $KMnO_4$). Redox properties of oxyacids of Phosphorus: H_3PO_2 (reaction with H_2SO_3 (reaction with H_2SO_3 (reaction with H_2SO_3 (reaction with H_2SO_4). Redox properties of oxyacids of Sulphur: H_2SO_3 (reaction with H_2SO_4), H_2SO_4 (reaction with H_2SO_4), H_2SO_4 0 (reaction with H_2SO_4), H_2SO_4 1). Redox properties of oxyacids of Chlorine.

Interhalogens- Classification- general preparation- structures of AB, AB₃, AB₅ and AB₇ type and reactivity.

Poly halides- Definition and structure of ICl_2^- , ICl_4^- and I_3 .

Pseudohalogens: Comparision with halogens.

S2-I-2: Chemistry of Zero group elements

2 h

Isolation of noble gases, Structure, bonding and reactivity of Xenon compounds – Oxides, Halides and Oxy-halides. Clatherate compounds and Anomalous behavior of He (II)

S2-I-3: Chemistry of d-block elements

6 h

Characteristics of d-block elements with special reference to electronic configuration, variable valence, ability to form complexes, magnetic properties &catalytic properties. Stability of various oxidation states and standard reduction potentials. Comparative treatment of second and third transition series with their 3d analogues. Study of Ti, Cr and Cu traids. Titanium triad – electronic configuration and reactivity of +3 and +4 states – oxides and halides. Chromium triad – reactivity of +3 and +6 states. Copper triad – reactivity of +1, +2 and +3 states.

Unit - II (Organic Chemistry)

15h(1 hr/week)

S2-O-1: Halogen compounds

4 h

Classification: alkyl (primary, secondary, tertiary), aryl, aralkyl, allyl, vinyl, benzyl. Chemical reactivity - reduction, formation of RMgX, Nucleophilic substitution reactions – classification into S_N1 and S_N2 . Mechanism and energy profile diagrams of S_N1 and S_N2 reactions. Stereochemistry of S_N2 (Walden Inversion) 2-bromobutane, S_N1 (Racemisation) 1-bromo-1-phenylpropane Structure and reactivity – Ease of hydrolysis - comparison of alkyl, vinyl, allyl, aryl, and benzyl halides.

S2-O-2: Hydroxy compounds and ethers

6 h

Alcohols: Preaparation: 1°, 2° and 3° alcohols using Griganard reagent, Reduction of Carbonyl compounds, carboxylic acids and esters. Physical properties: H-bonding, Boiling point and Solubility. Reactions with Sodium, HX/ZnCl₂ (Lucas reagent), esterification, oxidation with PCC, alk. KMnO₄, acidic dichromates, conc. HNO₃ and Oppenauer oxidation (Mechanism).

Phenols: Preapartion: (i) from diazonium salts of anilines, (ii) from benzene sulphonic acids and (iii) Cumene hydroperoxide .

Properties: Acidic nature, formation of phenoxide and reaction with R-X, electrophilic substitution; halogenations, Riemer Tiemann reaction (Mechanism), Kolbe reaction (Mechanism), Gattermann-Koch reaction, Azo-coupling reaction, Schotton-Boumann raction, Houben-Hoesch condensation, .

Ethers: Nomenclature, preparation by (a) Williamson's synthesis (b) from alkenes by the action of conc. H₂SO₄. Physical properties – Absence of Hydrogen bonding, insoluble in water, low boiling point. Chemical properties – inert nature, action of conc. H₂SO₄ and HI.

S2-O-3 Carbonyl compounds

5 h

Preparation of aldehydes & ketones from acid chloride,1,3-dithianes, nitriles and from carboxylic acids. Special methods of preparing aromatic aldehydes and ketones by (a) Oxidation of arenes (b) Hydrolysis of benzal halides Physical properties – absence of Hydrogen bonding. Reactivity of the carbonyl groups in aldehydes and ketones. Chemical reactivity: Addition of (a) NaHSO₃ (b) HCN (c) RMgX (d) NH₃ (e) RNH₂ (f) NH₂OH (g) PhNHNH₂ (h) 2,4-DNP (Schiff bases). Addition of H₂O to form hydrate, chloral hydrate (stable), addition of alcohols - hemi acetal and acetal formation. Cannizaro reaction. Oxidation reactions – KMnO₄ oxidation and auto oxidation, reduction – catalytic hydrogenation, mechanism of Clemmenson's reduction, Wolf-kishner reduction, Meerwein Pondoff Verly reduction. Reduction with LAH, NaBH₄.

Unit - III (Physical Chemistry)

15h(1 hr/week)

S2-P-1: Electrochemistry

15 h

Electrical transport – conduction in metals and in electrolyte solutions, specific conductance and equivalent conductance, measurement of equivalent conductance, variation of specific and equivalent conductance with dilution. Migration of ions and Kholrausch's law, Arrhenius theory of electrolyte dissociation and its limitations, weak and strong electrolytes, Ostwald's dilution law - its uses and limitations. Debye-Huckel-Onsagar's equation for strong electrolytes (elementary treatment only). Transport number, definition and determination by Hittorf's method for attackable electrodes. Applications of conductivity measurements: Determination of degree of dissociation, determination of Ka of acids, determination of solubility product of a sparingly soluble salt, conductometric titrations.

Electrolytic and Galvanic cells – reversible and irreversible cells, conventional representation of electrochemical cells. Electro motive force (EMF) of a cell and its measurement. Computation of EMF. Types of reversible electrodes- the gas electrode, metal-metal ion, metal-insoluble

salt and redox electrodes. Electrode reactions, Nernst equation, cell EMF and Single electrode potential, Standard Hydrogen electrode – reference electrodes (calomel electrode) – standard electrode potential, sign conventions, electrochemical series and its significance. Applications of EMF measurements. Calculation of thermodynamic quantities of cell reactions (Gibbs free energy G, Helmholtz free energy and Equilibrium constant K). Determination of pH using hydrogen electrode, glass electrode and quinhydrone electrode. Solubility product of AgCl. Potentiometric titrations.

Unit – IV (General Chemistry)

15 h (1 hr/week)

S2-G-1: Theory of Quantitative Analysis

6 h

Volumetric Analysis: Introduction, standard solutions, indicators, end point, titration curves, Types of titrations: i) neutralization titration- principle, theory of acid base indicators, titration curves and selection of indicators- strong acid - strong base, strong acid - weak base, weak acid-strong base and weak acid - weak base. Theory of redox titrations - internal(KMnO4) and external indicators - use of diphenylamine and ferroin indicators. Theory of complexometric titrations - use of EBT, Murexide and Fast sulphone black indicators. Role of pH in complexometric titrations. Precipitation titrations - theory of adsorption indicators.

Gravimetric analysis- Introduction, nucleation, precipitation, growth of precipitate, filtration and washing, drying and incineration of precipitate, coprecipitation and post precipitation. Determination of Ni²⁺

S2-G-2: Stereoisomerism

5 h

Optical activity: Definition, wave nature of light, plane polarised light, optical rotation and specific rotation, chiral centers. Chiral molecules: definition and criteria - absence of plane, center and S_n axis of symmetry – asymmetric and dissymmetric molecules. Examples of asymmetric molecules (Glyceraldehyde, Lactic acid, Alanine) and disymmetric molecules (trans-1,2-dichlorocyclopropane). Molecules with constitutionally symmetrical chiral carbons (Tartaric acid) Molecules with constitutionally unsymmetrical chiral carbons (2,3dibromopentane). D, L configuration – examples. R, S – configuration: Cahn-Ingold-Prelog rules, examples for asymmetric and disymmetric molecules.

S2-G-3: Dilute Solutions & Colligative Properties

4 h

Dilute Solutions, Colligative Properties, Raoult's law, relative lowering of vapour pressure, molecular weight determination. Osmosis - laws of osmotic pressure, its measurement, determination of molecular weight from osmotic pressure. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point.

References

General reference: B.Sc I Year Chemistry : Semester II, Telugu Academy publication, Hyd **Unit I**

- 1. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications 1996.
- 2. Concise Inorganic Chemistry by J.D. Lee 3rd edn.
- 3. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus 3rd edn Wiley Publishers 2001.
- 4. Chemistry of the elements by N.N.Greenwood and A. Earnshaw Pergamon Press1989.
- 5. Inorganic Chemistry by Shriver and Atkins 3rd edn Oxford Press 1999.
- **6.** Inorganic Chemistry Principles of structure and reactivity by James E.Huhey, E.A. Keiter and R.L. Keiter 4th Edn.
- 7. Textbook of inorganic chemistry by R Gopalan.

Unit II

- 1. Organic Chemistry by Morrison and Boyd.
- 2. Organic Chemistry by Graham Solomons.
- 3. Organic Chemistry by Bruice Yuranis Powla.
- 4. Organic Chemistry by L. G. Wade Jr.
- 5. Organic Chemistry by M. Jones, Jr
- 6. Organic Chemistry by John McMurry.
- 7. Organic Chemistry by Soni.
- 8. General Organic chemistry by Sachin Kumar Ghosh.
- 9. Organic Chemistry by C N pillai

Unit III

- 1. Physical chemistry by P W Atkins
- 2. Principles of physical chemistry by Prutton and Marron.
- 3. Text Book of Physical Chemistry by Soni and Dharmahara.
- 4. Text Book of Physical Chemistry by Puri and Sharma
- 5. Text Book of Physical Chemistry by K. L. Kapoor
- 6. Physical Chemistry through problems by S.K. Dogra.
- 7. Elements of Physical Chemistry by Lewis and Glasstone.
- 8. Material science by Kakani & Kakani

Unit IV

- 1. Vogel's Text Book of Quantitative Analysis by G.H.Jeffery, J.Bassett, J.Mendham and R.C. Denney 5th edn Addison Wesley Longman Inc. 1999.
- 2. Quantitative Analysis by Day and Underwood Prentice Hall (India) VI Edn..
- 3. Nano: The Essentials by T. Pradeep, McGraw-Hill Education.
- 4. Chemistry of nanomaterials: Synthesis, Properties and applications by CNR Rao et.al.
- 5. Nanostructured Materials and Nanotechnology, edited by Hari Singh Nalwa, Academic Press
- 6. Practical chemistry by V K Ahluwalia, Sunitha Dhingra and AdarshGulati.

Laboratory Course

45hrs (3 h / week)

Paper II- Quantitative Analysis

Acid - Base titrations

- 1. Estimation of Carbonate in Washing Soda.
- 2. Estimation of Bicarbonate in Baking Soda.
- 3. Estimation of Carbonate and Bicarbonate in the Mixture.

- 4. Estimation of Alkali content in Antacid using HCl.
- 5. Estimation of NH_4^+ by back titration

Redox Titrations

- 1. Determination of Fe(II) using K₂Cr₂O₇
- 2. Determination of Fe(II) using KMnO₄ with sodium oxalate as primary standard.
- 3. Determination of Cu(II) using Na₂S₂O₃ with K₂Cr₂O₇ as primary standard

Complexometric Titrations

- 1. Estimation of Mg²⁺
- 2. Estimation of Cu²⁺

B.Sc II Yr CHEMISTRY SEMESTER WISE SYLLABUS SEMESTER III Paper-III Chemistry - III

Unit-I (Inorganic Chemistry)

15 h (1 hr/week)

S3-I-1: Chemistry of f-block elements:

5 h

Chemistry of Lanthanides: Position in periodic table, Electronic structure, oxidation state, ionic and atomic radii- lanthanide contraction- cause and consequences, anomalous behavior of post lanthanides-complexation- type of donor ligands preferred. Magnetic properties-paramagnetism. Colour and spectra, f-f transitions —occurrence and separation— ion exchange method, solvent extraction.

Chemistry of actinides- general features – electronic configuration, oxidation state, actinide contraction, colour and complex formation. Comparison with lanthanides.

S3-I-2: Coordination Compounds-I

6 h

Simple inorganic molecules and coordination complexes. Nomenclature – IUPAC rules, 1. Coordination number, coordination geometries of metal ions, types of ligands. 2.Brief review of Werner's theory, Sidgwick's electronic interpretation and EAN rule and their limitations. (Valence bond theory (VBT) – postulates and application to (a) tetrahedral complexes [Ni(NH₃)4]²⁺, [NiCl₄]²⁻ and [Ni(CO)₄] (b) Square planar complexes [Ni(CN)₄]²⁻, [Cu(NH₃)₄]²⁺, [PtCl₄]²⁻ (c) Octahedral complexes [Fe(CN)₆]⁴⁻, [Fe(CN)₆]³⁻, [FeF₆]⁴⁻, [Co(NH₃)₆]³⁺, [CoF₆]³⁻ Limitations of VBT. 3. Isomerism in coordination compounds, stereo isomerism – (a)geometrical isomerism in (i) square planar metal complexes of the type [MA₂B₂], [MA₂BC], [M(AB)₂], [MABCD]. (ii) Octahedral metal complexes of the type [MA₄B₂], [M(AA)₂B₂], [MA₃B₃] using suitable examples, (b) Optical isomerism in (i). tetrahedral complexes [MABCD], (ii). Octahedral complexes [M(AA)₂B₂], [M(AA)₃] using suitable examples. Structural isomerism: ionization, linkage, coordination ligand isomerism using suitable examples.

S3-I-3: Metal carbonyls and Organometallic Chemistry

4 h

Metal carbonyls: Preparation and properties of $Ni(CO)_4$. Structural features of $Ni(CO)_4$, $Fe(CO)_5$, $Fe_2(CO)_9$, $Fe_3(CO)_{12}$ and $Cr(CO)_6$ -18 valence electron rule.

Definition, nomenclature and classification of organometallic compounds. Methods of preparation, properties and applications of alkyl and aryl compounds of Li, Mg & Al.

Unit - II (Organic Chemistry)

15h(1 hr/week)

S3-O-1: Carboxylic acids and derivatives

5 h

Preparation: a) Hydrolysis of Nitriles, amides and esters. b) Carbonation of Grignard reagents. Special methods of preparation of Aromatic Acids - Oxidation of Arenes. Physical properties-hydrogen bonding, dimeric association,. Chemical properties – Reactions involving H, OH and COOH groups -salt formation, anhydride formation, Acid halide formation, Esterification (mechanism) & Amide formation. Reduction of acid to the corresponding primary alcohol - via ester or acid chloride. Degradation of carboxylic acids by Huns Diecker reaction, Schmidt reaction (Decarboxylation). Arndt – Eistert synthesis, Halogenation by Hell – Volhard - Zelensky reaction. Carboxylic acid Derivatives – Hydrolysis nand Amonolysis of acid halides, Acid anhydrides and esters (mechanism of ester hydrolysis by base and acid). Hydrolysis and dehydration of amides.

S3-O-2: Nitrohydrocarbons

3 h

Preparation of Nitroalkanes. Reactivity - halogenation, reaction with HNO₂ (Nitrous acid), Nef reaction, reduction. Aromatic Nitrohydrocarbons: Preparation of Nitrobenzene by Nitration. Physical properties, chemical reactivity –Reduction of Nitrobenzenes in different media.

S3-O-3: Amines, Cyanides and Isocyanides

7 h

Amines: classification into 1° , 2° , 3° Amines and Quarternary ammonium compounds. Preparative methods – Ammonolysis of alkyl halides, Gabriel synthesis, Hoffman's bromamide reaction (mechanism). Reduction of Amides and Schmidt reaction. Physical properties. Use of amine salts as phase transfer catalysts. Chemical Properties: a) Alkylation b) Acylation c) Carbylamine reaction d) Hinsberg separation. Reaction with Nitrous acid of 1° , 2° , 3° (Aliphatic and aromatic amines). Electophilic substitutions of Aromatic amines – Bromination and Nitration, oxidation of aryl and 3° Amines, diazotisation. Diazonium salts: Preparation with mechanism. Synthetic importance – a) Replacement of diazonium group by – OH, X (Cl)-Sandmeyer and Gatterman reaction, by fluorine (Schiemann's reaction), by iodine, CN, NO₂, H and aryl groups. Coupling Reaction of diazonium salts. i) with phenols ii) with anilines. Reduction to phenyl hydrazines.

Cyanides and isocyanides: Structure. Preparation of cyanides from a) Alkyl halides b) from amides c) from aldoximes. Preparation of isocyanides from Alkyl halides and Amines. Properties of cyanides and isocyanides, a) hydrolysis b) addition of Grignard reagent iii)

Unit III (Physical Chemistry)

15 h (1 hr/week)

S3-P-1:Thermodynamics –I

10 h

A brief review of - Energy, work and heat units, mechanical equivalent of heat, definition of system, surroundings. First law of thermodynamics statement- various forms mathematical expression. Thermodynamic quantities- extensive properties and intensive properties, state function and path functions. Energy as a state function and exact differential. Work of expansion and heat absorbed as path function.

Expression for work of expansion, sign convention problems on first law. Heat changes at constant pressure and heat changes at constant volume. Enthalpy. Heat capacities at constant pressure and constant volume. Derivation of Cp-Cv = R. Isothermal adiabatic processes. Reversible and irreversible processes. Reversible change and maximum work. Derivation of expression for maximum work for isothermal reversible process. Problems. Internal energy of an ideal gas. Joules experiment. Joule-Thompson coefficient. Adiabatic changes in ideal gas, derivation of equation, PV^{γ} = constant. P-V curves for isothermal and adiabatic processes. Heat of a reaction at constant volume and at constant pressure, relation between ΔH and ΔV . Variation of heat of reaction with temperature. Kirchhoff's equation and problems. Limitations of

Variation of heat of reaction with temperature. Kirchhoff's equation and problems. Limitations of first law and need for second law. Statement of second law of thermodynamics. Cyclic process. Heat engine, Carnot's theorem, Carnot's cycle. Derivation of efficiency of heat engine. Problems. Thermodynamic scale of temperature.

S3-P-2: Thermodynamics-II

5 h

Entropy: Definition from Carnot's cycle. Entropy as a state function. Entropy as a measure of disorder. Sign of entropy change for spontaneous and non-spontaneous processes & equilibrium processes. Entropy changes in i). Reversible isothermal process, ii). Reversible adiabatic process, iii). Phase change, iv). Reversible change of state of an ideal gas. Problems. Entropy of mixing of ideal gases. Free energy Gibb's function (G) and Helmholtz'sfunction (A) as thermodynamic quantities. Concept of maximum work and network ΔG as Criteria for spontaneity. Derivation of equation $\Delta G = \Delta H - T\Delta S$. Significance of the equation. Gibbs equations and Maxwell relations. Variation of G with P, V and T.

Unit – IV (General Chemistry)

15 h (1 hr/week)

S3-G-1 Evaluation of analytical data

4 h

Significant figures, accuracy and precision. Errors-classification of errors- determinate and indeterminate errors, absolute and relative errors. Problems based on mean, median, range, standard deviation

S3-G-2: Carbanions-I

5 h

Introduction, acidic nature of α -hydrogens and tautomerism in carbonyl compounds, nitro hydrocarbons, ethyl acetoacetate, diethyl malonate. Terminal alkynes. Stabilty of carbanions Reactions: Aldol reaction, Perkin reaction, Benzoin condensation, haloform reaction, conversion of smaller alkynes to higher alkynes.

S3-G-3: Phase Rule 6 h

Statement and meaning of the terms – Phase, Component and Degrees of freedom, Gibb's Phase rule, phase equilibria of one component system – water system. Phase equilibria of two-component system – Solid-Liquid equilibria, simple eutectic –Pb-Ag system, desilverisation of lead. Solid solutions – compound with congruent melting point – Mg-Zn system and incongruent melting point – NaCl-H₂O system.

References

General reference: B.Sc II Year Chemistry: Semester III, Telugu Academy publication, Hyd **Unit-I**

- **1.** Analytical chemistry by G. L. David Krupadanam, D. Vijaya Prasad, K. Varaprasada Rao, K.L.N. Reddy and C. Sudhakar
- 2. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications (1996).
- 3. Concise Inorganic Chemistry by J.D. Lee 3rd edn Van Nostrand Reinhold Company(1977)
- 4. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus 3rd edn Wiley Publishers (2001).
- 5. Inorganic Chemistry Principles of structure and reactivity by James E.Huhey, E.A. Keiter and R.L. Keiter 4th edn. (2006)
- 6. Chemistry of the elements by N.N.Greenwood and A. Earnshaw Pergamon Press(1989).
- 7. Inorganic Chemistry by Shriver and Atkins 3rd edn Oxford Press (1999).
- 8. Textbook of Inorganic Chemistry by R Gopalan(Universities Press(2012)
- 9. College Practical chemistry by V K Ahluwalia, Sunitha Dhingra and Adarsh Gulati Universities Press (India) Limited(2012)

Unit-II

- 1. Text book of organic chemistry by Soni. Sultan Chand & Sons; Twenty Ninth edition (2012)
- 2. General Organic chemistry by Sachin Kumar Ghosh. New Age Publishers Pvt Ltd (2008).
- 3. Text book of organic chemistry by Morrison and Boyd. Person(2009)
- 4. Text book of organic chemistry by Graham Solomons. Wiley(2015)
- 5. Text book of organic chemistry by Bruice Yuranis Powla. (2012)
- 6. Text book of organic chemistry by C N pillai CRC Press (2012)
- 7. Organic Chemistry by L. G. Wade Jr.
- 8. Organic Chemistry by M. Jones, Jr
- 9. Organic Chemistry by John McMurry.

Unit III

- 1. Principles of physical chemistry by Prutton and Marron. The MacmillanCompany; 4th Edn.(1970)
- 2. Text Book of Physical Chemistry by Soni and Dharmahara. Sulthan Chand and Sons.(2011)
- 3. Text Book of Physical Chemistry by Puri and Sharma. S. Nagin chand and Co.(2017)
- 4. Text Book of Physical Chemistry by K. L. Kapoor. (2012)
- 5. Colloidal and surface chemistry, M. Satake, Y. Hayashi, Y.Mido, S.A.Iqbal and
- 6. M.S.sethi, Discovery Publishing Pvt.Ltd (2014)
- 7. Material science by Kakani & Kakani, New Age International (2016)
- 8. Physical Chemistry by Ira Levine (Author) McGraw-Hill Education; 6 edition (May 9, 2008)

Unit IV

1. Text book of organic chemistry by Morrison and Boyd, Person(2009)

- 2. Text book of organic chemistry by Graham solomons, Wiley(2015)
- 3. Text book of organic chemistry by Sony, Sultan Chand & Sons; 29th edition (2012)
- 4. Text book of organic chemistry by Bruice yuranis Powla, (2012)
- 5. General Organic chemistry by Sachin kumar Ghosh, New Age Publishers Pvt Ltd (2008)

Laboratory Course

Paper III (Organic Synthesis)

45 h (3h/week)

1. Synthesis of Organic compounds:

Acetylation: Acetylation of salicylic acid, Benzoylation of Aniline.

Aromatic electrophilic substitution: Nitration: Preparation of nitro benzene and m-dinitro benzene.

Halogenation: Preparation of p-bromo acetanilide, Preparation of 2,4,6-tribromo phenol

Oxidation: Preparation of benzoic acid from benzyl chloride.

Esterification: Preparation of n-butyl acetate from acetic acid.

Methylation: Preparation of - naphthyl methyl ether.

Condensation: Preparation of benzilidine aniline and Benzaldehyde and aniline.

Diazotisation: Azocoupling of β -Naphthol.

2. Microwave assisted synthesis of Asprin – DEMO (demonstration only)

.

B.Sc. II yr CHEMISTRY SEMESTER WISE SYLLABUS SEMESTER IV Paper-IV Chemistry - IV

Unit-I (Inorganic Chemistry) S4-I-1: Coordination Compounds –II

15h (1 h/week)

11 h

Crystal field theory (CFT)- Postulates of CFT, splitting patterns of d-orbitals in ctahedral, tetrahedral, square planer with suitable examples. Crystalfield stabilization energies and its calculations for various dn configurations in octahedral complexes. High Spin Low Spin complexes. Colour and Magnetic properties of transition metal complexes. Calculations of magnetic moments spin only formula. Detection of complex formation - basic principles of various methods- change in chemical properties, solubility, colour, pH, conductivity, magnetic susceptibility.

Hard and soft acids bases (HSAB) - Classification, Pearson's concept of hardness and softness, application of HSAB principles – Stability of compounds / complexes, predicting the feasibility of reaction. Thermodynamic and kinetic stability of transition of metal complexes. Stability of metal complexes –stepwise and overall stability constant and their relationship and chelate effect determination of composition of complex by Job's method and mole ratio method.

Applications of coordination compounds: Applications of coordination compounds a) in quantitative and qualitative analysis with suitable examples b) in medicine for removal of toxic metal ions and cancer therapy c) in industry as catalysts polymerization – Ziegler Natta catalyst d) water softening.

S4-I-2:Bioinorganic Chemistry

4 h

Essential elements, biological significance of Na, K, Mg, Ca, Fe, Co, Ni, Cu, Zn and chloride (Cl-). Toxic metal ions As, Hg & Pb Oxygen transport and storage – structure of hemoglobin, binding and transport of oxygen. Fixation of CO2 in photosynthesis- overview of light and dark reactions in photosynthesis. Structure of chlorophyll and coordination of magnesium. Electron transport in light reactions from water to NADP+ (Z – scheme).

Semester-IV

Unit - II (Organic Chemistry) S4-O-1: Carbohydrates

15h(1 hr/week)

6 h

Introduction: Classification and nomenclature. Monosaccharides: All discussion to be confined to (+) glucose as an example of aldo hexoses and (-) fructose as example of ketohexoses. Chemical properties and structural elucidation: Evidences for straight chain pentahydroxy aldehyde structure. Number of optically active, isomers possible for the structure, configuration

of glucose based on D-glyceraldehyde as primary standard (No proof for configuration is required). Evidence for cyclic structure of glucose (Pyranose structure, anomeric Carbon and anomers). Proof for the ring size (methylation, hydrolysis and oxidation reactions). (Haworth formula and chair conformational formula). Structure of fructose: Evidence of 2 – ketohexose structure. Same osazone formation from glucose and fructose, Hydrogen bonding in osazones, cyclic structure for fructose (Furanose structure, Haworth formula).

Inter Conversion of Monosaccharides: : Arabinose to D-glucose, D- mannose (kiliani – Fischer method). Epimers, Epimerisation- Lobry de bruyn van Ekenstein rearrangement. D-glucose to D-arabinose by Ruff's degradation. Aldohexose(+) (glucose) to ketohexose (-) (fructose) and Ketohexose(Fructose) to aldohexose (Glucose).

S4-O-2: Amino acids and proteins

5 h

Classification. Methods of synthesis: General methods of synthesis of alpha amino acids (specific examples – Glycine, Alanine, Valine and Leucine) by following methods: a) From halogenated Carboxylic acid b)Malonic ester synthesis c) strecker's synthesis. Physical properties: Optical activity of naturally occurring amino acids. Zwitter ion structure – salt like character, definition of isoelectric point. Chemical properties: General reactions due to amino and carboxyl groups – Lactams from gamma and delta amino acids by heating peptide bond (amide linkage). Structure and nomenclature of peptides. Primary structure of proteins, di peptide synthesis

S4-O-3: Heterocyclic Compounds

4 h

Introduction and definition: 5 membered ring compounds with one hetero atom Ex. Furan. Thiophene and pyrrole. Importance of ring systems –Numbering. Aromatic character

Resonance structures: Explanation of feebly acidic character of pyrrole, electrophillic substitution, Halogenation, Nitration and Sulphonation. Reactivity of furan as 1,3-diene, Diels Alder reactions (one example). Sulphonation of thiophene purification of Benzene obtained from coal tar). Preparation of furan, Pyrrole and thiophene Paul-Knorr synthesis. Structure of pyridine, Basicity — Aromaticity — Comparison with pyrrole — preparation by Hantsch method and properties — Reactivity towards Nucleophilic substitution reaction — chichibabin reaction.

Unit III (Physical Chemistry)

15h (1 hr/week)

S4-P-1: Chemical Kinetics

11 h

Introduction to chemical kinetics, rate of reaction, variation of concentration with time, rate laws and rate constant. Specific reaction rate. Factors influencing reaction rates: effect of concentration of reactants, effect of temperature, effect of pressure, effect of reaction medium, effect of radiation, effect of catalyst with simple examples. Order of a reaction.

First order reaction, derivation of equation for rate constant. Characteristics of first order reaction. Units for rate constant. Half- life period, graph of first order reaction, Examples-Decomposition of H_2O_2 and decomposition of oxalic acid, Problems.

Pseudo first order reaction, Hydrolysis of methyl acetate, inversion of cane sugar, problems. Second order reaction, derivation of expression for second order rate constant, examples-

Saponification of ester, $2O_3 \rightarrow 3O_2$, $C_2H_4+H_2 \rightarrow C_2H_6$. Characteristics of second order reaction, units for rate constants, half- life period and second order plots. Problems

S4-P-2: Photochemistry

4 h

Introduction to photochemical reactions, Difference between thermal and photochemical reactions, Laws of photo chemistry- Grotthus Draper law, Stark-Einstein's Law of photochemical equivalence. Quantum yield. Examples of photo chemical reactions with different quantum yields. Photo chemical combinations of H₂-Cl₂and H₂-Br₂ reactions, reasons for the high and low quantum yield. Problems based on quantum efficiency. Consequences of light absorption. Singlet and triplet states. Jablonski diagram. Explanation of internal conversion, inter- system crossing, phosphorescence, fluorescence.

Unit III (General Chemistry)

15h (1 hr/week)

S4-G-1: Theories of bonding in metals

4 h

Valence bond theory, Explanation of metallic properties and its limitations, Free electron theory, thermal and electrical conductivity of metals, limitations, Band theory, formation of bands, explanation of conductors, semiconductors n-type and p-type, extrinsic & intrinsic semiconductors, and insulators.

S4-G-2: Carbanions-II

5 h

Mannich reaction, Michael addition and Knoevengeal condensation Synthetic applications of Aceto acetic ester. Acid hydrolysis and ketonic hydrolysis: Preparation of ketones, monocarboxylic acids and dicarboxylic acids Malonic ester—synthetic applications. Preparation of (i) substituted mono carboxylic acids and (ii) substituted dicarboxylic acids.

S4-G-3: Colloids & Surface Chemistry

6 h

Definition of colloids. Classification of colloids. Solids in liquids (sols): preparations and properties – Kinetic, Optical and Electrical stability of colloids. Protective action. Hardy–Schultz law, Gold number. Liquids in liquids (emulsions): Types of emulsions, preparation and emulsifier. Liquids in solids(gels): Classification, preparations and properties, General applications of colloids.

Adsorption: Types of adsorption. Factors influencing adsorption. Freundlich adsorption isotherm. Langmuir theory of unilayer adsorption isotherm. Applications.

References

General reference: B.Sc II Year Chemistry: Semester IV, Telugu Academy publication, Hyd Unit- I

- 1. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications (1996).
- 2. Concise Inorganic Chemistry by J.D. Lee 3rd edn. Van Nostrand ReinholdCompany(1977)
- 3. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus 3rd edn Wiley Publishers (2001).
- 4. Inorganic Chemistry Principles of structure and reactivity by James E.Huhey, E.A. Keiter and R.L. Keiter 4th edn. (2006)
- 5. Chemistry of the elements by N.N.Greenwood and A. Earnshaw Pergamon Press(1989).
- 6. Inorganic Chemistry by Shriver and Atkins 3rd edn Oxford Press (1999).
- 7. Textbook of Inorganic Chemistry by R Gopalan, Universities Press,(2012)

Unit-II

- 1. Text book of organic chemistry by Soni. Sultan Chand & Sons; Twenty Ninthedition (2012)
- 2. General Organic chemistry by Sachin Kumar Ghosh. New Age Publishers Pvt Ltd (2008)
- 3. Text book of organic chemistry by Morrison and Boyd. Person(2009)
- 4. Text book of organic chemistry by Graham Solomons. Wiley(2015)
- 5. Text book of organic chemistry by Bruice Yuranis Powla. (2012)
- 6. Text book of organic chemistry by C N pillai CRC Press (2012)
- 8. Organic Chemistry by L. G. Wade Jr.
- 9. Organic Chemistry by M. Jones, Jr
- 10. Organic Chemistry by John McMurry.

Unit III

- 1. Principles of physical chemistry by Prutton and Marron. The MacmillanCompany; 4th edn. (1970)
- 2. Text Book of Physical Chemistry by Soni and Dharmahara. Sulthan Chand &sons.(2011)
- 3. Text Book of Physical Chemistry by Puri and Sharma. S. Nagin chand and Co.(2017)
- 4. Text Book of Physical Chemistry by K. L. Kapoor. (2012)
- 5. Physical Chemistry through problems by S.K. Dogra. (2015)
- 6. Text Book of Physical Chemistry by R.P. Verma.
- 7. Elements of Physical Chemistry by Lewis Glasstone. Macmillan (1966)
- 8. Industrial Electrochemistry, D. Pletcher, Chapman & Hall, London, 1990

Unit IV

- 1. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications (1996).
- 2. Concise Inorganic Chemistry by J.D. Lee 3rd edn. Van Nostrand Reinhold Company (1977)
- 3. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus 3rd edn Wiley Publishers (2001).
- 4. Inorganic Chemistry Principles of structure and reactivity by James E.Huhey, E.A. Keiter and R.L. Keiter 4th edn. (2006)
- 5. Text book of organic chemistry by Morrison and Boyd, Person (2009)
- 6. Text book of organic chemistry by Graham solomons, Wiley (2015)
- 7. Fundamentals of organic synthesis and retrosynthetic analysis by Ratna Kumar Kar, CBA,(2014)
- 8. Organic synthesis by Dr. Jagadamba Singh and Dr. L.D.S. Yadav, Pragati Prakashan, 2010
- 7. Stereochemistry of organic compounds by D. Nasipuri, New Academic Science Limited, 2012
- 8. Organic chemistry by Clayden, Greeves, Warren and Wothers, Oxford University Press, 2001
- 9. Fundamentals of Asymmetric Synthesis by G. L. David Krupadanam, Universities, Press 2014

Laboratory Course

Paper IV-

Qualitative Analysis of Organic Compounds:

45hrs (3 h/week)

Qualitative analysis: Identification of organic compounds through the functional group analysis - ignition test, determination of melting points/boiling points, solubility test, functional group tests and preparation of suitable derivatives of the following: Carboxylic acids, phenols, amines, urea, thiourea, carbohydrates, aldehydes, ketones, amides, nitro hydrocarbons, ester and naphthalene.

B.Sc. Chemistry II Year Semester-III Skill Enhancement Course- I (SEC-I) (2 Credits) Rules in Chemistry Laboratory and Lab Reagents

Unit I: Laboratory Safety Rules and Regulations

15 h (1 hr/week)

General rules and regulations for lab safety: Minimizing Risks of Hazards, Personal Protective Equipment (PPE) - Hair, Dressing for the Laboratory, Eye Protection, Eyewash fountain, Gloves, Laboratory Protocols, Labeling Chemicals, Careful reading of labels Prevention of Inhaling Harmful Chemicals, Guide to Chemical Hazards, Chemical Spills etc,. Accidents use of fire extinguisher and first aid kit in the laboratory, safety symbols- Preparation of the charts by the students and display of chats in chemistry labs. Calibration of fractional weights, calibration of glass ware - burette, pipette, standard flask, Normality/Molarity and specific gravity of concentrated acids — Preparation of dilute solutions (Numerical problems). Precautions to be taken in the preparation of dilute acids and bases and bases. Preparation of stock solutions of salts with specific examples. Properties of primary standard salt and preparation of standard solution. Good laboratory practices-maintenance of observation book record.

UNIT 2: Preparation of Lab Reagents

15 h (1 hr/week)

Preparation of indicators and use of indicators in volumetric analysis- acid base titrations, redox titrations, precipitation titrations and complexometric titrations. Role of an indicator in detecting end point (Phenolphthalein, Methyl orange, Methyl-red, Potassium Chromate, Diphenylamine, EBT, Murexide, etc). Preparation of buffers – pH 10 ammonical buffer and acetate buffer solutions. Preparation of commonly used reagents: Ammonium hydroxide solution, Ammonium molybdate reagent, Ammonium hydrogen phosphate solution, Bayer's reagent, Benedict's solution, Bromine water, Dimethyl glyoxime reagent, 2,4-Dinitrophenyl hydrazine reagent, Eriochrome black-T reagent Fehling solution, Ferric chloride solution, Ferrous sulphate solution, Iodine solution, Molisch's reagent, Nessler's reagent, Neutral FeCl3, Schiff's reagent, Silver nitrate solution, Sodium carbonate solution, Sodium hydroxide (Caustic soda) solution, Starch solution, Tollen's reagent. (reference work and submission of assignments). Charts preparation depicting course content.

RECOMMENDED BOOKS

- 1. Vogel's Text Book of Quantitative Chemical Analysis, 5th edition.
- 2. Vogel's Text Book of macro and semimicro qualitative inorganic analysis. G. Svehla, 5th edition.
- 3. Chemistry Reagent Manual Prepared by Chemistry Department, SGTB Khalsa College under DBT's Star College Scheme, University of Delhi (Available: online)
- 4. American Chemical Society Safety in Academic Chemistry Laboratories 8th edition.

[Course objectives (CO)]: To improve the skills of students in the application of theory and practical knowledge. To fill the gap between theory and practicals. To train the students in understanding laboratory safety rules and to improve the skills in preparation of laboratory reagents]

B.Sc. Chemistry II Year Semester III

Skill Enhancement Course- II (SEC –II) (2 Credits) REMEDIAL METHODS FOR POLLUTION, DRINKING WATER AND SOIL FERTILITY STANDARDS

UNIT I: Remedial Methods for Pollution Prevention and control of air pollution 15 h (1 hr/week)

Ozone hole-causes and harm due to ozone depletion. The effect of CFC's in Ozone depletion and their replacements. Global Warming and Greenhouse Effect Precautions to control global warming. Deleterious effect of pollutants - Endangered Monuments- acid rain. Precautions to protect monuments. Sources of Radiation pollution - Chernobyl accident and its Consequences. Radiation effect by the usage of cell phones and protection tips. Deleterious effects of cell phone towers and health hazards.

Sources of water pollution-(i). Pollution due to pesticides and inorganic chemicals, (ii). Thermal pollution (iii). Ground water pollution (iv). Eutrophication.

Methods for control of water pollution and water recycling. Dumping of plastics in rivers & oceans and their effect on aquatic life. Determination of (i) Dissolved Oxygen and (ii) Chemical Oxygen Demand in polluted water - Illustration through charts (or) demonstration of experiments. Sources of soil pollution (i). Plastic bags, (ii). Industrial and (iii). Agricultural sources. Control of soil pollution. Environmental laws in India. Environmental benefits of planting trees.

UNIT II: Drinking Water and Soil Fertility Standards and Analysis 15 h (1 hr/week)

Water Quality and Common Treatments for Private Drinking Water Systems: Drinking Water Standards-Primary Drinking Water Standards: Inorganics, Organics and Volatile Organic Chemicals. Secondary Drinking Water Standards-Inorganics and Physical Problems. Water Testing, Mineral Analysis, Microbiological Tests, Pesticide and Other Organic Chemical Tests. Principle involved in Water Treatment Techniques. (i) Reverse osmosis (ii) Disinfection methods such as chlorination, ultraviolet light, ozonation etc (iii) Chemical oxidation and (iv) Ion exchange (water softeners). Visit to nearby drinking water plants and interaction at sites.

Introduction to Soil Chemistry- Basic Concepts. Effect of pH on nutrient availability. Macronutrients and their effect on plants -Carbon, Hydrogen, Oxygen, Nitrogen and Phosphorus other macronutrients-Calcium, Magnesium and Sulfur. Micronutrients and their effect on plants. Boron (B4 O7 2-), Copper (Cu2+), Iron (Fe2+, Fe3+) Manganese (Mn2+) Molybdenum (MoO4 2-) Zinc (Zn2+) Cobalt (Co2+) Chlorine (Cl-) and Others. Determination of soil nitrogen by Kjeldahl method- Illustration through charts (Or) demonstration of experiment. Visit to nearby agricultural forms and interaction with farmers. Discussion with farmers on the use of Soil Analysis Kits.

References

- 1. A Text book for 'Remedial methods for pollution, drinking water and soil fertility standards', First Edition, Authors: Dr Mudvath Ravi, Gopu Srinivas, Putta Venkat Reddy, Vuradi Ravi Kumar, Battini Ushaiah, ISBN No. 978-93-5311-183-0.
- 2. Remedial methods for pollution, drinking water and soil fertility standards, Author: Dr G. Vanjatha.
- 3. Remedial methods for pollution, drinking water and soil fertility standards, Telugu version, Authors: Dr N. Yogi Babu, Dr. G. Vanajatha, M. Srilatha.
- 4. Environmental Pollution, download.nos.org/333courseE/10.pdf
- 5. CFC Replacements, butane.chem.uiuc.edu/pshapley/Environmental/L21/3.html
- 6. Effects of Acid Rain on Buildings www.air-quality.org.uk/12.php
- 7. Acid Rain Effects Buildings Chemistry chemistry.elmhurst.edu/vchembook/196buildings.html 8. How to protect national heritage ways to protect monuments www.youthkiawaaz.com/2011/03/how-to-protect-national-heritage/.
- 9. Chernobyl nuclear power plant accident NRC www.nrc.gov/reading-rm/doc-collections/fact-sheets/chernobyl-bg.pdf
- 10. Side-effects of harmful radiation from mobile phones and towers pib.nic.in/newsite/printrelease.aspx?relid=116304
- 11. Cell Phone Radiation Protection Highly Effective Tips https: www.electricsense.com/775/how-to-protect-yourself-from-cell-phone-radiation/
- 12. Chemical Waste That Impact on Aquatic Life or Water Quality blog.idrenvironmental.com/chemical-waste-that-impact-on-aquatic-life-or-waterquality
- 13. Trees and Your Environment Clean Air Gardening www.cleanairgardening.com/plantingtrees 14.water quality and common treatments for private drinking water . extension.uga.edu/publications/detail.html?number=b939
- 15. Soil chemistry https://casfs.ucsc.edu/about/publications/Teaching-Organic-Farming/PDFdownloads/2.2-soil-chemistry.pdf
- 16. Soil Analysis-Determination of Available Nitrogen ... Amrita Virtual Lab vlab.amrita.edu/?sub=2&brch=294&sim=1551&cnt=1
- 17. Determination of dissolved oxygen (DO)

www.cutm.ac.in/pdf/env%20engg%20lab%20manual.pdf 18. Determination of chemical oxygen demand of wastewater www.pharmaguideline.com > quality control > test

B.Sc. Chemistry II Year Semester - IV

Skill Enhancement Course- III (SEC - III) (2 Credits) Materials and their Applications

Unit – I: Types of Materials

15 h (1 hr/week)

Introduction: Materials and their importance. Classification of Materials, Advanced materials and their need. Types of Materials: Metals, ceramics, polymers and composites; Nature of bonding (Type of bond present). Types and applications of metal alloys: Classification- ferrous and non-ferrous alloys. Ferrous alloys -types and their applications. Non-ferrous alloys - Cu, Al, Ti alloys, their applications and super alloys.

Field Work- Collection of Metal Alloy Samples.

Types and Applications of Ceramics: Classification of Ceramics based on their application- glasses, clay products, refractories, abrasives, cements, and advanced ceramics. Glasses: Compositions and Characteristics of Some of the Common Commercial Glasses; Properties and applications of glass ceramics - preparation of charts depicting various types of glass and their use. Clay products: Structural clay products and the white wares. Refractories: Compositions of four Common Ceramic Refractory Materials, fireclay, silica, basic refractories ex. MgO and special refractories ex. Alumina and Zirconia Cements: Classification, preparation of cement and the setting process; quick setting cements; applications.

Field Work-Visit to industries and collection of samples of materials

Unit – II: Types of Polymers and Applications

15 h (1 hr/week)

Classification of Polymeric materials based on application: Coatings, adhesives, films, foams with examples Polymer Additives: Fillers, Plasticizers, Stabilizers, Colorants, Flame Retardants with examples.

Advanced Materials: Types of advanced materials - semiconductors, bio-compatible materials, smart materials, advanced polymeric materials and nano-engineered materials. Biocompatible materials: Definition. Materials used as biomaterials and their properties. Metals and alloys used in bone and joint replacement. Filling and restoration materials – dental cements, dental amalgams, dental adhesives.

Field Work- Visit to Dental Clinics and interaction with Doctors regarding materials used in Dental treatments.

Smart materials: Shape memory alloys- definition and examples (Ni-Ti alloys, Cu based alloys), applications. Conducting polymers: - Introduction, Electrically conducting polymers and their uses (polyaniline, polypyrrole, polyacetylene and polythiophene).

References

- 1. William D. Callister Materials Science and Engineering An Introduction, John Wiley & Sons, Inc, 2006
- 2. Material science by Kakani and Kakani.
- 3. Sujata V., Bhat., —Biomaterials, Narosa Publication House, New Delhi, 2002.
- 4.M. V. Gandhi and B. S. Thompson, —Smart Materials and Structures, Chapman and Hall, London, First Edition, 1992.
- 5 Duerig, T. W., Melton, K. N, Stockel, D. and Wayman, C.M., —Engineering aspects of Shapememory Alloys, Butterworth Heinemann, 1990.
- 6. Conducting Polymers, Fundamentals and Applications A Practical Approach Authors: Chandrasekhar, Prasanna Ashwin-Ushas Corp., Inc. Kluwer Academic Publishers. Boston

B.Sc. Chemistry II Year Semester IV Skill Enhancement Course- IV (SEC - IV) (2 Credits) Chemistry of Cosmetics and Food Processing

Unit-I: Chemistry of Cosmetics and Perfumes

A general study including preparation and uses of the following: Hair dye, hair spray, shampoo, sunscreen lotions, lipsticks, talcum powder, nail enamel, creams (cold, vanishing and shaving creams), antiperspirants and artificial flavours. Essential oils and their importance in cosmetic industries with reference to eugenol, geraniol, sandalwood oil, eucalyptus, 2-phenyl ethyl alcohol. Demonstration experiments or illustration of experimental procedures through charts for the preparation of talcum powder, shampoo and vanishing cream. Analysis of deodorants and antiperspirant - Aluminum, Zinc, Boric acid, Chloride and Sulphide.

Unit-II: Food Processing and Food Adulteration

Food processing: Introduction, methods for food processing, additives and preservatives. Food processing- impact on nutrition, analysis of calcium in milk by complexometric titration, spectrophotometric analysis of iron in foods, Spectrophotometric identification and determination of caffeine and benzoic acid in soft drinks. Field Work -Visit to Food Industries. Food adulteration: Adulterants in some common food items and their identification: Pulses, chilli powder, turmeric powder, milk, honey, spices, food grains and wheat flour, coffee powder, tea leaves, vegetable oil, ghee, ice creams, tomato sauce. Field Work-Collection of adulterated food samples, demonstration of a minimum of five experiments for testing adulterants in food items.

References

- 1. E. Stocchi: Industrial Chemistry, Vol -I, Ellis Horwood Ltd. UK.
- 2. P.C. Jain, M. Jain: Engineering Chemistry, Dhanpat Rai & Sons, Delhi
- 3. Sharma, B.K. & Gaur, H. Industrial Chemistry, Goel Publishing House, Meerut (1996).
- 4. Rameen Devi, Food Processing and Impact on Nutrition, Sc J Agric Vet Sci., AugSep 2015; 2(4A):304-311.
- 5. W.A. Poucher, Perfumes, Cosmetics and Soaps (1993).
- 6. Srilakshmi, Food Science. Edition: 3rd (2004). 7. Lillian Hoagland Meyer, Food chemistry (2008).
- 8. Handbook of Analysis and Quality Control for Fruit and Vegetable Products, S. Ranganna, Tata McGraw-Hill Education, 1986 Food.
- 9. Fundamental concepts of applied chemistry J.C Ghosh, S. Chand and Co, Ltd, New Delhi.
- 10. Applied Chemistry K .Bhagavathi Sundhar, MJP publishers.

B.Sc. CBCS CHEMISTRY

Theory Model Question Paper

For Semester I, II, III, IV

Time: 3 Hrs. Max.Marks: 80

Note: Answer eight questions from Part-A and all questions from Part-B. Each question carries 4 marks in Part-A and 12 marks in Part-B.

		Part-A	$(8 \times 4 = 32 \text{ Marks})$
		(Short Answer Type)	
I. Writ	e any Eight question	ons of the following	
1.			
2.			
3.			
4.			
5.			
6.			
7.			
8.			
9.			
10.			
11.			
12.			
		Part-B	$(4 \times 12 = 48 \text{ Marks})$
		(Essay Answer Type)	
	swer all Questions		
1 a)			
	(OR)		
b)			
2 a)			
• .	(OR)		
b)			
2 a)			
3 a)	(OP)		
b)	(OR)		
b)			
4 a)			
+ a)	(OR)		
b)	(OK)		
\sim γ			

B.Sc. CBCS CHEMISTRY Practical Model Question Paper For Semester I, II, III, IV

Time: 3 Hrs. Max.Marks: 50

SEMESTER	External (Marks)	Internal (Marks)	Total (Marks)
I	40	10	50
II	40	10	50
III	40	10	50
IV	40	10	50

B.Sc., Chemistry, Iii Year, Cbcs Syllabus

Telangana State Council Of Higher Education, Govt. of Telangana, B.Sc., CBCS Common Core Syllabi for All Universities in Telangana Proposed Scheme for Choice Based Credit System in B.Sc., Chemistry,

Generic Elective-I (GE-I) and Generic Elective-II (GE-II) Courses for B.Sc. Non Chemistry/B.A/B.Com Students

THIRD YE	AR- SEMSTER - V			
Code	Course Title	Course Type	HPW	Credits
BS 501	Materials and their Applications	SEC-3	2	2
BS 502	Pharmaceuticals	GE-1	2T	2
	(For B.Sc. Non Chemistry/B.A/B.Com Students)			
BS 503	Optional –I	DSC-1E	3T+2P=5	3+1=4
BS 504	Optional – II	DSC-2E	3T+2P=5	3+1=4
	Optional – III Chemistry - V			3
BS 505	Laboratory Course (Organic Synthesis and TLC)	DSC-3E	$\left.\begin{array}{c} \\ \mathbf{2P} \end{array}\right\} = 5$	1 =4
BS 506	Elective-A/B Optional – I	DSC-1E	3T+2P=5	3+1=4
BS 507	Elective-A/B Optional – II	DSC-2E	3T+2P=5	3+1=4
BS508A	Elective-A (Chemistry–VI) Instrumental			
	Methods of Analysis			
BS508B	Elective-B (Chemistry – VI) Industrial	_ ~ ~ -	3T \	3
		DSC-3E	= 5	├ = 4
	Laboratory Course		2P	1)
	(Experiments in Physical Chemistry-I)			
	Total Credits		34	28
SEMSTER				
BS 601	Chemistry of Cosmetics and Food Processing	SEC-4	2	2
BS 602	Materials and Their Applications	GE-2	2T	2
DG 602	(For B.Sc. Non Chemistry/B.A/B.Com Students)	D00 1E	275. 275. 7	2 1 4
BS 603	Optional – I	DSC-1F	3T+2P=5	3+1=4
BS 604	Optional – II	DSC-2F	3T+2P=5	3+1=4
BS 605	Optional – III Chemistry - VII	DCC 2E		3
	Laboratory Course (Qualitative and Spectral	DSC-3F	$\left.\begin{array}{c} \\ \mathbf{2P} \end{array}\right\} = 5$	=4
D.G. 60.6	Analysis of Organic Compounds)	D 0 0 1 F		1 -
BS 606	Elective-A/B Optional – I	DSC-1F	3T+2P=5	3+1=4
BS 607	Elective-A/B Optional – II	DSC-2F	3T+2P=5	3+1=4
BS 608A	Elective-A (Chemistry – VIII) Medicinal Chemistry		2Т –	2 >
BS 608B	Elective-B (Chemistry – VIII) Agricultural and	DSC_3F	$rac{3T}{rac} = 5$	3
DS 008B	Fuel Chemistry Fuel Chemistry	DOC-JI	$_{\mathrm{2P}}$ \int -3	1 J - 4
	Laboratory Course			-
	(Experiments in Physical Chemistry-II)			
	(Daperments in Figure Chemistry-II)		34	28
	Total Credits		3-1	164
1		l	1	10.

*Optional III Chemistry,

AECC: Ability Enhancement Compulsory Course: SEC: Skill Enhancement Course; DSC: Discipline Specific Course; GE: Generic Elective

B.Sc. Chemistry III Year Semester - V

Skill Enhancement Course- III (SEC - III) (2 Credits) Materials and their Applications

30 Hrs

Unit – I: Types of Materials

15 Hrs

Introduction: Materials and their importance. Classification of Materials, Advanced materials and their need.

Types of Materials: Metals, ceramics, polymers and composites; Nature of bonding (Type of bond present).

Types and applications of metal alloys: Classification- ferrous and non-ferrous alloys. Ferrous alloys -types and their applications. Non-ferrous alloys - Cu, Al, Ti alloys, their applications and super alloys.

Field Work- Collection of Metal Alloy Samples

Types and Applications of Ceramics:

Classification of Ceramics based on their application- glasses, clay products, refractories, abrasives, cements, and advanced ceramics.

Glasses: Compositions and Characteristics of Some of the Common Commercial Glasses; Properties and applications of glass ceramics - preparation of charts depicting various types of glass and their use.

Clay products: Structural clay products and the white wares.

Refractories: Compositions of four Common Ceramic Refractory Materials, fireclay, silica, basic refractories ex. MgO and special refractories ex. Alumina and Zirconia

Cements: Classification, preparation of cement and the setting process; quick setting cements; applications.

Field Work-Visit to industries and collection of samples of materials

Unit - II Types of Polymers and Applications 15 Hrs Classification of Polymeric materials based on application: Coatings, adhesives, films, foams examples

Polymer Additives: Fillers, Plasticizers, Stabilizers, Colorants, Flame Retardants with examples. **Advanced Materials**: Types of advanced materials - semiconductors, bio-compatible materials, smart materials, advanced polymeric materials and nano-engineered materials.

Biocompatible materials: Definition. Materials used as biomaterials and their properties. Metals and alloys used in bone and joint replacement. Filling and restoration materials – dental cements, dental amalgams, dental adhesives.

Field Work-Visit to Dental Clinics and interaction with Doctors regarding materials used in Dental treatments

Smart materials: Shape memory alloys- definition and examples (Ni-Ti alloys, Cu based alloys), applications.

Conducting polymers: - Introduction, Electrically conducting polymers and their uses (polyaniline, polypyrrole, polyacetylene and polythiophene).

References:

- 1. A Text book on 'Materials and their Applications', First Edition, Authors: Dr Mudvath Ravi, Gopu Srinivas, Putta Venkat Reddy, Vuradi Ravi Kumar, Battini Ushaiah.
- 2. Materials Science and Engineering An Introduction by William D. Callister, Jr. John Wiley & Sons, Inc.
- 3. Material Science by Kakani and Kakani New Age International Pvt Ltd, 2004
- 4. Sujata V., Bhat., "Biomaterials", Narosa Publication House, New Delhi, 2002
- 5. M. V. Gandhi and B. S. Thompson, "Smart Materials and Structures", Chapman and Hall, London, First Edition, 1992.
- 6. Duerig, T.W., Melton, K. N, Stockel, D. and Wayman, C.M., "Engineering aspects of Shapememory Alloys", Butterworth Heinemann, 1990.
- 7. Chandrasekhar, Prasanna Ashwin-Ushas Conducting Polymers, Fundamentals and Applications A Practical Approach Authors: Corp., Inc. Kluwer Academic Publishers. Boston.

Semester V

Generic Elective (GE) Course - I (2 Credits)

Generic Elective-I (GE-I) Course for B.Sc. Non Chemistry/B.A/B.Com Students Pharmaceuticals 30Hrs

Unit – I: General Characteristics of Drugs

15Hrs

Introduction - Diseases – causes of diseases, Drug – definition and sources.

ADME of drugs (brief) – Absorption, distribution, drug action (site of action), metabolism (in liver), elimination (brief).

Examples (i) Zintac (Ranitidine, antacid) (ii) Paracetamol (antipyretic) (iii) Benadryl (Cough syrup). Characteristics of an ideal drug.

Nomenclature of Drugs – chemical name – generic name – trade name. Trade names for the given generic names – (i) Aspirin (ii) Amoxycillin (iii) Ciprofloxacin (iv) Paracetamol (v) Mebendazole

Drug formulations: Definition – need for conversion of drug into medicine (drug formulations) – Additives – diluents, binders, lubricants, antioxidants, flavourants, sweeteners, colourants, coating agents. Classification of Drug formulations: oral, parenterals and topical dosage forms – advantages and disadvantages.

- (i) Oral Dosage forms: Tablets (Aspirin analgesic; Ciprofloxacin antibacterial). Capsules (Amoxycillin antibiotic; Omeprazole-antacid). Syrups (B-complex syrup; Benadryl- Cough syrup).
- (ii) Parenterals (Injection forms): Propranolol (antihypertensive), Heparin (anticoagulant)
- (iii) Topical dosage forms: Creams and Ointments
- (iv) Antiallergic: Aclometasone (Aclovate), Betamethasone valerate(2%) Multiple purposes,
- (v)Anti-itching: Doxepin Zonalon), Antifungal: Miconozole (Dactarin, Neomicol), Ketoconazole, (Nizoral Cream), Fluconazole, Anesthetic- Lidocaine, (Lidocaine ointment) and Antiseptic: Boro Plus Cream, For burns -Iodine ointment

Unit – II: Classification of Drugs

15Hrs

Classification of Drugs based on therapeutic action—Chemotherapeutic agents, Pharmacodynamic agents and drugs acting on metabolic processes. (brief explanation for the following)

- (i) Chemotherapeutic agents: Antimalarials Chloroquine; Antibiotic Amoxicillin; Antitubercular drugs isoniazide; Antiprotozoals metronidazole
- (ii) Pharmacodynamic agents
- (a) Drugs acting on CNS: Diazepam (CNS depressant), General anesthetic (thiopental sodium), antipyretic and analgesic (Iburofen)
- (b) Drugs acting on PNS: local anaesthetics (Benzocaine)
- (c) Drugs acting on cardiovascular system : Metoprolol (antihypertensive agents), Nefidipine antianginal and antihypertensive agent)
- (d) Drugs acting on renal system: Diuretics (Acetazolamide)
- (iii) Drugs acting on metabolic processes
- (a) Vitamins: Common name, source, deficiency, vitamin A, B2, B6, C, D, E and K remedy

(b) Hormones: Function (brief) - deficiency of hormones (Insulin, Testosterone and Osterone)

References:

- 1. Drugs by G.L.David Krupadanam, D.Vijaya Prasad, K.Varaprasad Rao, K.L.N.Reddy, C.Sudhakar, Universities Press (India) Limited 2007.
- 2. An Introduction to Medicinal Chemistry by Graham L. Patrick, Oxford University Press, New York. 1995
- 3. Chemistry text book for B.Sc., Vol. IV published by Telugu Academy, Govt. of Telangana

B.Sc III vr CHEMISTRY SEMESTER WISE SYLLABUS SEMESTER V Paper-V

Chemistry - V

Unit-I (**Inorganic Chemistry**)

11 h

S5-I-1: Coordination compounds –II

9 h

Crystal field theory (CFT)- Postulates of CFT, splitting patterns of d-orbitals in ctahedral. tetrahedral, square planer with suitable examples. Crystalfield stabilization energies and its calculations for various dⁿ configurations in octahedral complexes. High Spin Low Spin complexes.

Magnetic properties of transition metal complexes- para, dia, ferro, anti ferromagnetic properties, determination of magnetic susceptibility (Guoy method), spin only formula, calculations of magnetic moments.

Electronic spectra of metal complexes - colour of transtion metal agua complexes- d-d transitions. Detection of complex formation - basic principles of various methods- change in chemical properties, solubility, colour, pH, conductivity, magnetic susceptibility.

Thermodynamic and kinetic stability of transition of metal complexes. Stability of metal complexes -stepwise and overall stability constant andf their relationship. Factors effecting the stability constants. Chelate effect, determination of composition of complex by Job's method and mole ratio method.

Applications of coordination compounds

Applications of coordination compounds a) in quantitative and qualitative analysis with suitable examples b) in medicine for removal of toxic metal ions and cancer therapy c) in industry as catalysts polymerization – Ziegler Natta catalyst d) water softening.

S5-I-2: Boranes and Carboranes:

2 h

Definition of clusters. Structures of boranes and carboranes- Wade's rules closo nido, arachno Boranes and carboranes

Unit-II (Organic Chemistry)

11 h

S5-O-1: Amines, Cvanides and Isocvanides

7 h

Amines:

Nomenclature, classification into 1⁰, 2⁰, 3⁰Amines and Quarternary ammonium compounds. Preparative methods – 1. Ammonolysis of alkyl halides 2. Gabriel synthesis 3. Hoffman's bromamide reaction (mechanism). Reduction of Amides and Schmidt reaction. Physical properties and basic character – Comparative basic strength of Ammonia, methyl amine, dimethyl amine, trimethyl amine and aniline- comparative basic strength of aniline, N-methylaniline and N.N- dimethyl aniline (in aqueous and non- aqueous medium), steric effects and substituent effects. Use of amine salts as phase transfer catalysts. 4. Chemical Properties: a) Alkylation b) Acylation c) Carbylamine reaction d) Hinsberg separation. 5. Reaction with Nitrous acid of 1⁰, 2⁰, 3⁰ (Aliphatic and aromatic amines).

Electophilic substitutions of Aromatic amines – Bromination and Nitration, oxidation of aryl and 3 Amines, diazotisation. 6. Diazonium salts: Preparation with mechanism. Synthetic importance – a) Replacement of diazonium group by – OH, X (Cl)- Sandmeyer and Gatterman reaction, by fluorine (Schiemann's reaction), by iodine, CN, NO₂, H and aryl groups. Coupling Reaction of diazonium salts. i) with phenols ii) with anilines. Reduction to phenyl hydrazines.

Cyanides and isocyanides:

Nomenclature (aliphatic and aromatic) structure. Preparation of cyanides from a) Alkyl halides b) from amides c) from aldoximes. Preparation of isocyanides from Alkyl halides and Amines. 2. Properties of cyanides and isocyanides, a)hydrolysis b) addition of Grignard reagent iii) reduction iv) oxidation.

S5-O-2: Heterocyclic Compounds

4 h

Introduction and definition: Simple 5 membered ring compounds with one hetero atom Ex. Furan. Thiophene and pyrrole. Importance of ring systems – presence in important natural products like hemoglobin and chlorophyll. Numbering the ring systems as per Greek letter and Numbers. Aromatic character – 6- electron system (four-electrons from two double bonds and a pair of non-bonded electrons from the hetero atom). Tendency to undergo substitution reactions.

Resonance structures: Indicating electron surplus carbons and electron deficient hetero atom. Explanation of feebly acidic character of pyrrol, electrophillic substitution at 2 or 5 position, Halogenation, Nitration and Sulphonation under mild conditions. Reactivity of furan as 1,3-diene, Diels Alder reactions (one example). Sulphonation of thiophene purification of Benzene obtained from coal tar). Preparation of furan, Pyrrole and thiophene from 1,4,-dicarbonyl compounds only, Paul-Knorr synthesis, structure of pyridine, Basicity – Aromaticity – Comparison with pyrrole – one method of preparation and properties – Reactivity towards Nucleophilic substitution reaction – chichibabin reaction.

Unit-III(Physical Chemistry) S5-P-1: Chemical Kinetics

11 h

Introduction to chemical kinetics, rate of reaction, variation of concentration with time, rate laws and rate constant. Specific reaction rate. Factors influencing reaction rates: effect of concentration of reactants, effect of temperature, effect of pressure, effect of reaction medium, effect of radiation, effect of catalyst with simple examples, order of reaction.

First order reaction, derivation of equation for rate constant. Characteristics of first order reaction. Units for rate constant. Half- life period, graph of 1^{st} order reaction, examples. Decomposition of H_2O_2 and decomposition of oxalic acid.

Pseudo first order reaction, Hydrolysis of methyl acetate, inversion of cane sugar, problems. Second order reaction, derivation of expression for 2 order rate constant, examples-Saponification of ester, $2O_3 \rightarrow 3O_2$, $C_2H_4 + H_2 \rightarrow C_2H_6$. Characteristics of second order reaction, units for rate constants, half-life period and second order plots.

Zero order reaction: derivation of rate expression, examples i)combination of H₂ and Cl₂ to form HCl, ii) thermal decomposition of HI on gold surface characteristics of Zero order reaction units of k, half-life period and graph, problems.

Determination of order of reaction: i) method of integration, ii) half life method, iii) Vant-Hoff differential method iv) Ostwald's isolation method. Problems

Kinetics of complex reactions (first order only): opposing reactions, parallel reactions, consecutive reactions and chain reactions. Problems.

Effect of temperature on reaction rate, Arrhenius equation. Temperature coefficient. Concept of energy of activation, determination of energy of activation from Arrhenius equation and by graphical method, problems. Simple collision theory based on hard sphere model explanation of frequency factor, orientation or steric factor. The transition state theory (elementary treatment).

Unit-IV (General Chemistry)

12 h

S5-G-2: Molecular spectroscopy

8 h

Introduction to electromagnetic radiation, interaction of electromagnetic rations with molecules, various types of molecular spectra.

Rotational spectroscopy (Microwave spectroscopy)

Rotational axis, moment of inertia, classification of molecules (based on moment of inertia), rotational energies, selection rules, determination of bond length of rigid diatomic molecules eg. HCl.

Infra red spectroscopy

Energy levels of simple harmonic oscillator, molecular vibration spectrum, selection rules. Determination of force constant. Qualitative relation of force constant to bond energies. Anharmonic motion of real molecules and energy levels. Modes of vibrations in polyatomic molecules. Characteristic absorption bands of various functional groups. Finger print nature of infrared spectrum.

Electronic spectroscopy:

Bonding and antibonding molecular orbitals, electronic energy levels of molecules (σ , π , n), types of electronic transitions: σ - σ *, n- σ *, n- π *, π - π * with suitable examples. Selection rules, Terminology of chromophore, auxochrome, bathochromic and hypsochromic shifts. Absorption of characteristics of chromophones: diene, enone and aromatic chromophores. Representation of UV-visible spectra.

S5-G-3: Photochemistry

4 h

Introduction to photochemical reactions, Difference between thermal and photochemical reactions, Laws of photo chemistry- Grotthus - Draper law, Stark - Einstein's Law of photo chemical equivalence. Quantum yield. Examples of photo chemical reactions with different quantum yields. Photo chemical combinations of H_2 - Cl_2 and H_2 - Br_2 reactions, reasons for the high and low quantum yield. Problems based on quantum efficiency, Consequences of light absorptions. Singlet and triplet states. Jablonski diagram Explanation of internal conversion, inter- system crossing, Phosphorescence, fluorescence.

References:

Unit- I

- 1. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications
- 2. Concise Inorganic Chemistry by J.D. Lee 3rd edn. Van Nostrand Reinhold Company(1977)
- 3. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus $3^{\rm rd}$ edn Wiley Publishers (2001). Chem.
- 4. Inorganic Chemistry Principles of structure and reactivity by James E.Huhey, E.A. Keiter and R.L. Keiter 4th edn. (2006)
- 5. Chemistry of the elements by N.N.Greenwood and A. Earnshaw Pergamon Press (1989).
- 6. Inorganic Chemistry by Shriver and Atkins 3rd edn Oxford Press (1999).

Unit- II

- 1. Text book of organic chemistry by Soni. Sultan Chand & Sons; Twenty Ninth edition (2012)
- 2. General Organic chemistry by Sachin Kumar Ghosh. New Age Publishers Pvt Ltd (2008)
- 3. Text book of organic chemistry by Morrison and Boyd. Person(2009)
- 4. Text book of organic chemistry by Graham Solomons. Wiley(2015)
- 5. Text book of organic chemistry by Bruice Yuranis Powla. (2012)

Unit III

- 1. Principles of physical chemistry by Prutton and Marron. The Macmillan Company; 4th edition (1970)
- 2. Text Book of Physical Chemistry by Soni and Dharmahara. Sulthan Chand & sons.(2011).
- 3. Text Book of Physical Chemistry by Puri, Sharmaand Pattania. chand and Co.(2017)
- Physical Chemistry by Atkins & De Paula, 8th Edition
 Text Book of Physical Chemistry by K. L. Kapoor. (2012)
- 6. Physical Chemistry through problems by S.K. Dogra. (2015)
- 7. Text Book of Physical Chemistry by R.P. Verma.
- 8. Elements of Physical Chemistry by Lewis Glasstone. Macmillan (1966)
- 9. Basics of Chemical Kinetics by G.L. Agarwal, New Delhi: Tata-McGraw-Hill, 1990.
- 10. Kinetics and mechanism of chemical transformations by Rajaram & Kuriacose, Macmillan/Laxmi Publications (P) Ltd., New Delhi(2010)

Unit IV

- 1. Bioinorganic Chemistry, M.N.Huges, Hussain K. Reddy(2013)
- 2. Organic spectroscopy, William Kemp, Palgrave Macmillan; 2nd Revised edition edition (1 February 1987)
- 3. Text Book of Physical Chemistry by Puri, Sharmaand Pattania. chand and Co.(2017)
- 4. Photochemistry by Gurdeep Raj, Goel publishing house, 5th edition

Laboratory Course:

Paper V(Organic Synthesis and TLC) (CHE 551)

45 h (3h/w)

1. Synthesis of Organic compounds:

Acetylation: Acetylation of salicylic acid, Benzoylation of Aniline.

Aromatic electrophilic substitution: Nitration: Preparation of nitro benzene and m-dinitro benzene.

Halogenation: Preparation of p-bromo acetanilide, Preparation of 2,4,6-tribromo phenol

Oxidation: Preparation of benzoic acid from benzyl chloride.

Esterification: Preparation of n-butyl acetate from acetic acid. Methylation: Preparation of - naphthyl methyl ether.

Condensation: Preparation of benzilidine aniline and Benzaldehyde and aniline.

Diazotisation: Azocoupling of β-Naphthol.

2. Thin layer Chromatography

Determination of Rf values and identification of organic compounds: preparation and separation of 2,4-dinitrophenyl hydrazones of acetione and 2-butanone using toluene and light petroleum(40:60)

Separation of ortho & para nitro aniline mixtures

B.Sc. Chemistry III Year Semester-V, Paper-VI Elective- A (3 Credits) Instrumental Methods of Analysis

45Hrs

Unit I: Chromatography I

11Hrs

S5-E-A-I: Solvent Extraction- Principle, Methods of extraction: Batch extraction, continuous extraction and counter current extraction. Application – Determination of Iron (III). Chromatography: Classification of chromatographic methods, principles of differential migration, adsorption phenomenon, nature of adsorbents, solvent systems.

Thin layer Chromatography (TLC): Advantages, preparation of plates, development of the chromatogram, Detection of the spots, factors effecting Rf values and applications.

Paper Chromatography: Principle, choice of paper and solvent systems, development of chromatogram – ascending, descending, radial and two dimensional chromatography and applications.

Unit II: Chromatography II 11Hrs S5-E-A-I: Column Chromatography- Principle, Types of stationary phases, Column packing – Wet packing technique, Dry packing technique. Selection criteria of mobile phase solvents for eluting polar, non-polar compounds and its applications.

Ion exchange chromatography: Principle, cation and anion exchange resins, its application in separation of ions.

Gas Chromatography: Theory and instrumentation (Block Diagram), Types of stationary phases and carrier gases (mobile phase).

High performance liquid chromatography: Theory and instrumentation, stationary phases and mobile phases. Analysis of paracetamol.

Unit III: Colorimetry and Spectrophotometry 12Hrs S5-E-A-III: General features of absorption – spectroscopy, transmittance, absorbance, and molar absorptivity. Beer Lambert's law and its limitations, difference between Colorimetry and Spectrophotometry.

Instruments – Single beam UV- Visible Spectrophotometer, Double beam UV- Visible Spectrophotometer. Lamps used as energy sources. Verification of Beer's law. Estimation of iron in water samples by thiocyanate method. Estimation of (i) Chromium and (ii) Manganese in steel.

IR Spectrophotometer: Principle, Sources of Radiations, Sampling, Block diagram of FT-IR Spectrophotometer.

Unit IV: Electroanalytical methods

11Hrs

S5-E-A-IV: Types of Electroanalytical Methods.

- **I)** Interfacial methods a) Potentiometry: Principle, Electrochemical cell, Electrodes- (i) Indicator and (ii) Reference electrodes Normal Hydrogen Electrode, Quinhydrone Electrode, Saturated Calomel Electrode. Numerical Problems. Application of Potentiometry Assay of Sulphanilamide
- b) Voltametry three electrode assembly; Intoduction to types of voltametric techniques, micro electrodes, Over potential and Polarization.

II) Bulk methods – Conductometry, Conductivity Cell, Specific Conductivity, Equivalent Conductivity. Numerical Problems. Applications of conductometry. Estimation of Cl⁻ using AgNO₃. Determination of Aspirin with KOH.

Recommended Text Books and Reference Books

- 1. Analytical Chemistry by David Krupadanam, Universities Press (India) Limited.
- 2. D.A. Skoog, F.J. Holler, T.A. Nieman, Principles of Instrumental Analysis, Engage earning India Ed.
- 3. D. A. Skoog, D.M. West, F.J. Holler, Fundamentals of Analytical Chemistry 6th Ed., Saunders College Publishing, Fort worth (1992).
- 4. Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of Analysis. 7th Ed. Wadsworth Publishing Co. Ltd., Belmont, California, USA, 1988.
- 5. Harris, D. C. Quantitative Chemical Analysis, W. H. Freeman. 2007.
- 6. Dean, J. A. Analytical Chemistry Notebook, McGraw Hill.
- 7. Day, R. A. & Underwood, A. L. Quantitative Analysis, Prentice Hall of India.
- 8. Freifelder, D. Physical Biochemistry 2nd Ed., W.H. Freeman and Co., N.Y. USA, 1982.
- 9. Cooper, T.G. The Tools of Biochemistry, John Wiley and Sons, N.Y. USA. 16, 1977.
- 10. Vogel, A. I. Vogel's Qualitative Inorganic Analysis 7th Ed., Prentice Hall.
- 11. Vogel, A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Prentice Hall.
- 12. Robinson, J.W. Undergraduate Instrumental Analysis 5th Ed., Marcel Dekker, Inc, New York (1995).
- 13. Analytical Chemistry 7th edition by Gary D. Christian (2004).
- 14. B. K. Sharma, Industrial Chemistry (including Chemical Engineering). Edn. (1997).
- 15. M.N Sastry, Separation Methods, Paperback (2004), Himalaya Publications.
- 16. Usharani Analytical Chemistry Paperback (2000) Narosa Publications.

B.Sc. Chemistry III Year Semester-V, Paper-VI Elective-B(3 Credits) Industrial Chemistry and Catalysis

45 Hrs

Unit I: General Principles of Metallurgy and Production of Non Ferrous Metals 11 Hrs

S5-E-B-I: Pyrometallurgy: Drying and calcination, roasting, smelting, products of smelting, **Hydrometallurgy:** Leaching methods, leaching agents, leaching of metals, oxides and sulphides.

Separation of liquid and solid phases and processing of aqueous solutions

Electrometallurgy: Electrolysis, Refining electrolysis, electrolysis from aqueous solutions,

fused-salt electrolysis

Refining processes: Chemical and physical refining processes

Production of selected non-ferrous metals (Copper, Nickel, Zinc): Properties, raw materials, production (flow charts presentations and chemical reactions involved) and uses.

Unit II: Natural and Synthetic Dyes

12Hrs

S5-E-B-II: Classification of dyes. Sources of natural dyes: Indigoid, Anthraquinone, Naphthoquinone, Benzoquinone, Flavonoid, Carotenoid and Tannin-based dyes.

Synthetic Dyes: Acidic, basic, dispersive, direct, reactive and vat dyes with examples. Extraction of natural dyes and their sustainability: The different methods for extraction of coloring materials from natural dyes. Aqueous extraction, alkali or acid extraction, microwave and ultrasonic assisted extraction, fermentation, solvent extraction, super critical fluid extraction. Drying methods. Application of natural dyes on textiles, Mordanting- types of mordanting - metallic mordants, oil mordants, Tannins and Tannic acid. Present scenario and sustainability issues in usage of natural dyes and cost considerations.

Unit III: Catalysis I 11Hrs S5-E-B-III: Homogeneous and heterogeneous catalysis - Definition of a catalyst and catalysis. Comparison of homogeneous and heterogeneous catalysis with specific examples. General characteristics of catalytic reactions.

Acid-base catalysis- Examples of acid and base catalysed reactions, hydrolysis of esters. Kinetics of acid catalysed reactions. Specific acid and general acid catalysis, Kinetics of base catalysed reactions. Specific base and general base catalysis. Examples-Aldol condensation and decomposition of nitramide, base catalysed conversion of acetone to di acetone alcohol. Effect of P^H on reaction rate of acid and base catalysed reactions.

Phase transfer catalysis: Principle of phase transfer catalysis, classification of phase transfer catalysts. Factors influencing the rate of PTC reactions.

Unit IV: Catalysis II 11Hrs S5-E-B-IV: Enzyme catalysis- Characteristics of enzyme catalysis, Examples: (i) Invertase in inversion of cane sugar (ii) Maltase in conversion of maltose to glucose (iii) Urease in decomposition of urea and (iv) Zymase in conversion of glucose to ethanol. Factors affecting enzyme catalysis. Effect of temperature, pH, concentration and inhibitor on enzyme catalysed reactions.

Kinetics of enzyme catalysed reactions: Michaelis-Menton Equation. Mechanism of enzyme catalysed reactions. Significance of Michaelis constant (K_m) and maximum velocity (V_{max}) , Lineweaver-Burk plot.

References

- 1. E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK.
- 2. R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi.
- 3. J. A. Kent: Riegel's Handbook of Industrial Chemistry, CBS Publishers, New Delhi.
- 4. Kateřina Skotnicová, Monika Losertová, Miroslav Kursa, Theory of production of non-ferrous metals and alloys Study.
- 5. K Venkataraman, the Chemistry of Synthetic Dyes, Volume 4, Elsevier, Technology & Engineering.
- 6. Sujata Saxena and A. S. M. Raja by Natural Dyes: Sources, Chemistry, Application and Sustainability Issues.
- 7. Physical Chemistry by Atkins and De Paula, 8th Edn.
- 8. Physical Chemistry by Puri, Sharma and Pattania, 2017.
- 9. Kinetics and mechanism of chemical transformations by Rajarajm and Kuraiacose, Published by Macmillan India Ltd.
- 10. Text book of Physical Chemistry by K.L. Kapoor Macmillan, 1999.
- 11. Catalysis by J.C. Kuriacose, Macmillan Macmillan Publishers India Limited, 1980.

Semester - V Laboratory Course Experiments in Physical Chemistry-I

Paper VI (Physical Chemistry)

45hrs (3 h/w)

1. Distribution law

- a) Determination of distribution coefficient of iodine between water and carbon Tetrachloride/determination of molecular status and partition coefficient of benzoic acid in Toluene and water.
- b) Determination of distribution coefficient of acetic acid between n-butanol and water.

2. Electrochemistry

- a) Determination of cell constant of conductivity cell.
- b) Determination of dissociation constant (Ka) of a ceticacid by conductivity measurements.

3. Colorimetry

Verification of Beer'slaw using KMnO₄ and determination of the concentration of the given solution.

4. Adsorption

Adsorption of acetic acid on animal charcoal, Verification of Freundlich adsorption isotherm.

5. Physical constants

Surface tension and viscosity of liquids. (Demonstration Experiment)

B.Sc. Chemistry III Year Semester VI Skill Enhancement Course- IV (SEC - IV) (2 Credits)

Chemistry of Cosmetics and Food Processing

30 Hrs

Unit-I: Chemistry of Cosmetics and Perfumes

15 Hrs

A general study including preparation and uses of the following: Hair dye, hair spray, shampoo, sunscreen lotions, lipsticks, talcum powder, nail enamel, creams (cold, vanishing and shaving creams), antiperspirants and artificial flavours. Essential oils and their importance in cosmetic industries with reference to eugenol, geraniol, sandalwood oil, eucalyptus, 2-phenyl ethyl alcohol.

Demonstration experiments or illustration of experimental procedures through charts for the preparation of talcum powder, shampoo and vanishing cream. Analysis of deodorants and antiperspirant - Aluminum, Zinc, Boric acid, Chloride and Sulphide.

Unit-II: Food Processing and Food Adulteration 15 Hrs Food processing: Introduction, methods for food processing, additives and preservatives. Food processing- impact on nutrition, analysis of calcium in milk by complexometric titration, spectrophotometric analysis of iron in foods, Spectrophotometric identification and determination of caffeine and benzoic acid in soft drinks.

Field Work -Visit to Food Industries.

Food adulteration: Adulterants in some common food items and their identification: Pulses, chilli powder, turmeric powder, milk, honey, spices, food grains and wheat flour, coffee powder, tea leaves, vegetable oil, ghee, ice creams, tomato sauce.

Field Work-Collection of adulterated food samples, demonstration of a minimum of five experiments for testing adulterants in food items.

References

- 1. E. Stocchi: Industrial Chemistry, Vol -I, Ellis Horwood Ltd. UK.
- 2. P.C. Jain, M. Jain: Engineering Chemistry, Dhanpat Rai & Sons, Delhi.
- 3. Sharma, B.K. & Gaur, H. Industrial Chemistry, Goel Publishing House, Meerut (1996).
- 4. Rameen Devi, Food Processing and Impact on Nutrition, Sc J Agric Vet Sci., Aug-Sep 2015; 2(4A):304-311.
- 5. W.A. Poucher, Perfumes, Cosmetics and Soaps (1993).
- 6. Srilakshmi, Food Science. Edition: 3rd (2004).
- 7. Lillian Hoagland Meyer, Food chemistry (2008).
- 8. Handbook of Analysis and Quality Control for Fruit and Vegetable Products, S. Ranganna, Tata McGraw-Hill Education, 1986 Food.
- 9. Fundamental concepts of applied chemistry J.C Ghosh, S. Chand and Co, Ltd, New Delhi.
- 10. Applied Chemistry K. Bhagavathi Sundhar, MJP publishers.

Semester VI Generic Elective (GE) Course - II (2 Credits)

Generic Elective-II (GE-II) Course for B.Sc. Non Chemistry/B.A/B.Com Students

Materials and their Applications 30 Hrs

Unit – I: Types of Materials

15 Hrs

Introduction:Materials and their importance: Classification of Materials, Advanced Materials and their need.

Types of Materials: Metals, ceramics, polymers and composites; Nature of bonding.

Types and applications of metal alloys: Classification: ferrous and non-ferrous alloys. Ferrous alloys-types and their applications. Non-ferrous alloys – Cu, Al, Ti alloysand their application, Super alloys.

Types and Applications of Ceramics: Classification of Ceramics based on their application-glasses, clay products, refractories, abrasives, cements and advanced ceramics.

Glasses: Compositions and characteristics of some of the common commercial glasses; Properties and applications of glass ceramics.

Clay products: Structural clay products and white wares.

Refractories: Compositions of four common ceramic refractory materials - fireclay, silica, basic refractories ex. MgO and special refractories ex. alumina and zirconia

Cements: Classification, preparation of cement and the setting process; quick setting cements and their applications.

Unit - II Types of Polymers and Applications

15 Hrs

Polymeric materials classification based on application: Coatings, adhesives, films, foams with examples.

Polymer Additives:Fillers, plasticizers, stabilizers, colorants, flame retardants with examples **Advanced Materials**: Types of advanced materials- semiconductors, bio-compatible materials, smart materials and advanced polymeric materials with examples.

Conducting polymers: Introduction, Electrically conducting polymers and their uses (polyaniline, polypyrrole, polyacetylene and polythiophene),

References:

- 1. William D. Callister Materials Science and Engineering An Introduction, John Wiley & Sons, Inc. 2006.
- 2. Material science by Kakani and Kakani.
- 3. Sujata V., Bhat., "Biomaterials", Narosa Publication House, New Delhi, 2002.
- 4.M. V. Gandhi and B. S. Thompson, "Smart Materials and Structures", Chapman and Hall, London, First Edition, 1992.
- 5. Duerig, T. W., Melton, K. N, Stockel, D. and Wayman, C.M., "Engineering aspects of Shapememory Alloys", Butterworth Heinemann, 1990.
- 6. Conducting Polymers, Fundamentals and Applications A Practical Approach Authors: Chandrasekhar, Prasanna Ashwin-Ushas Corp., Inc. Kluwer Academic Publishers. Boston

B.Sc. III yr CHEMISTRY SEMESTER WISE SYLLABUS SEMESTER VI Paper-VII Chemistry - VII

Unit-I (Inorganic Chemistry)

11 h

S6-I-1:Inorganic reaction mechanisms

4h

Labile and inert complexes, Thermodynamic and kinetic stability based on VBT & CFT: ligand substitution reactions – S_N1 and S_N2 in Octahedral complexes; substitution reactions of square planar complexes – Trans effect and applications of trans effect. Reactions of tetrahedral complexes - Hydrolysis of silicon halides and phosphorous oxides.

S6-I-2:Bioinorganic chemistry

5h

Essential elements, biological significance of Na, K, Mg, Ca, Fe, Co, Ni, Cu, Zn and chloride (Cl). Toxic metal ions As, Hg & Pb Oxygen transport and storage – structure of hemoglobin, binding and transport of oxygen. Fixation of CO₂ in photosynthesis- overview of light and dark reactions in photosynthesis. Structure of chlorophyll and coordination of magnesium. Electron transport in light reactions from water to NADP (Z – scheme).

S6-I-3: Hard and soft acids bases (HSAB)

2h

Classification, Pearson's concept of hardness and softness, application of HSAB principles – Stability of compounds / complexes, predicting the feasibility of reaction

UNIT - II (Organic Chemistry)

11 h

S6-O-1:Carbohydrates

6 h

Introduction: Classification and nomenclature – classification into mono, oligo and polysaccharides, into pentoses, hexoses *ETC*., into aldoses and ketoses.

Monosaccharides: All discussion to be confined to (+) glucose as an example of aldo hexoses and (-) fructose as example of ketohexoses. Chemical properties and structural elucidation: Evidences for straight chain pentahydroxy aldehyde structure (Acetylation, reduction to n-hexane, cyanohydrin formation, reduction of Tollen's and Fehling's reagents and oxidation to gluconic and saccharic acids). Number of optically active, isomers possible for the structure, configuration of glucose based on D-glyceraldehyde as primary standard (No proof for configuration is required). Evidence for cyclic structure of glucose (some negative aldehyde tests and mutarotation). Cyclic structure of glucose: Proposition of cyclic structure (Pyranose structure, anomeric Carbon and anomers). Proof for the ring size (methylation, hydrolysis and oxidation reactions). Different ways of writing pyranose structure (Haworth formula and chair conformational formula). Structure of fructose: Evidence of 2 – ketohexose structure (formation of penta acetate, formation of cyanohydrin its hydrolysis and reduction by HI to give 2-Carboxy-n-hexane) Same osazone formation from glucose and fructose, Hydrogen bonding in osazones, cyclic structure for fructose (Furanose structure, Haworth formula).

Inter Conversion of Monosaccharides: Aldopentose to aldo hexose – eg: Arabinose to D-glucose, D- mannose (kiliani – Fischer method). Epimers, Epimerisation- Lobry de bruyn van Ekenstein rearrangement. Aldohexose – Aldopentose eg: D-glucose to D-arabinose by Ruff's degradation. Aldohexose(+) (glucose) to ketohexose (–)(Fructose) and Ketohexose (Fructose) to aldohexose (Glucose).

S6-O-2Amino acids and proteins

5 h

acids into acidic, basic and neutral amino acids with examples. Methods of synthesis: General methods of synthesis of alpha amino acids (specific examples – Glycine, Alanine, valine and Leucene) by following methods: a) From halogenated Carboxylic acid b)Malonic ester synthesis c) strecker's synthesis. Physical properties: Optical activity of naturally occurring amino acids: L – configuration, irrespective of sign of rotation. Zwitter ion structure – salt like character, solubility, melting points, amphoteric character, definition of isoelectric point.

Chemical properties: General reactions due to amino and carboxyl groups – Lactams from gamma and delta amino acids by heating peptide bond (amide linkage). Structure and nomenclature of peptides and proteins, peptide synthesis

Unit-III (Physical Chemistry)

11 h

S6-P-1:Thermodynamics –I

11h

A brief review of - Energy, work and heat units, mechanical equivalent of heat, definition of system, surroundings. I law of thermodynamics statement- various forms mathematical expression. Thermodynamic quantities- extensive properties and intensive properties, state function, path functions energy as a state function, and exact differential. Work of expansion and heat absorbed as path function.

Expression for work of expansion, sign convention problems on I law. Heat changes at constant pressure and heat changes at constant volume. Enthalpy. Heat capacities at constant pressure and constant volume. Derivation Cp-Cv = R.

Isothermal adiabatic processes. Reversible and irreversible processes. Reversible change and maximum work. Derivation of expression for maximum work for isothermal reversible process. Problems. Internal energy of an ideal gas. Joules experiment and Joule-Thompson coefficient. Adiabatic changes in ideal gas derivation of equation, $PV^{\gamma} = \text{constant}$. P-V curves for isothermal and adiabatic processes.

Heat of a reaction at constant volume and at constant pressure, relation between ΔH and ΔV .

Variation of heat of reaction with temperature. Kirchhoff's equation and problems. Limitations of I law and need for II law. Statement of II law of thermodynamics. Cyclic process. Heat engine, Carnot's theorem, Carnot's cycle. Derivation of efficiency of heat engine problems. Thermodynamic scale of temperature.

Unit-IV 12 h

S6-G-1: Proton Magnetic Resonance Spectroscopy

4h

Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals – spin-spin coupling, representation of proton NMR spectrum – Integrations. H NMR spectrum of – ethyl bromide, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate and acetophenone.

S6-G-2: Mass Spectrometry

4 h

Electron Impact Mass: Basic principles, Nitrogen rule, types of ions: Molecular ion, fragment ion and isotopic ions, representation of mass spectrum, types of peaks (molecular ion, fragment and isotopic ion peaks). Determination of molecular weight Mass spectrum of ethyl chloride, ethyl bromide and acetophenone.

S6-G-3: Thermodynamics- II

4 h

Entropy: Definition from Carnot's cycle. Entropy as a state function. Entropy as a measure of disorder. Sign of entropy change for spontaneous and non-spontaneous processes & equilibrium processes. Entropy changes in i). Reversible isothermal process, ii). reversible adiabatic process, iii). phase change, iv). reversible change of state of an ideal gas. Problems. Entropy of mixing inert perfect gases. Free energy Gibb's function (G) and Helmholtz's function (A) as thermodynamic quantities. Concept of maximum work and net work ΔG as criteria for spontaneity. Derivation of equation $\Delta G = \Delta H - T\Delta S$. significance of the equation. Gibbs equations and the Maxwell relations. Variation of G with P, V and T.

References:

Unit- I

- 1. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus 3rd edn Wiley Publishers (2001).
- 2. Inorganic Chemistry Principles of structure and reactivity by James E.Huhey, E.A. Keiter and R.L. Keiter 4th edn. (2006)
- 3. Metal Ions In Reaction mechanisms, K. Veera Reddy. Galgotia Publications Pvt Ltd(2004)

Unit- II

- 1. Text book of organic chemistry by Soni. Sultan Chand & Sons; Twenty Ninth edition (2012)
- 2. General Organic chemistry by Sachin Kumar Ghosh. . <u>New Age Publishers Pvt Ltd</u> (2008)
- 3. Text book of organic chemistry by Morrison and Boyd. Person(2009)
- 4. Text book of organic chemistry by Graham Solomons. Wiley(2015)
- 5. Text book of organic chemistry by Bruice Yuranis Powla. 2nd Edition (2012)

Unit III

- 1. Principles of physical chemistry by Prutton and Marron. The Macmillan Company; 4th edition (1970)
- 2. Text Book of Physical Chemistry by Soni and Dharmahara. Sulthan Chand & sons.(2011)
- 3. Text Book of Physical Chemistry by Puri, Sharmaand Pattania. chand and Co.(2017)
- 4. Physical Chemistry by Atkins & De Paula, 8th Edition, **2009**
- 5. Text Book of Physical Chemistry by K. L. Kapoor. (2012)
- 6. Physical Chemistry through problems by S.K. Dogra. (2015)
- 7. Text Book of Physical Chemistry by R.P. Verma.
- 8. Elements of Physical Chemistry by Lewis Glasstone. Macmillan (1966)
- 9. Thermodynamics by Rajaram, Vishal Publishing Co,(2013)

Unit IV

- 1. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus 3rd edn Wiley Publishers (2001).
- 2. Organic Spectroscopy, William Kemp Palgrave Macmillan; 2nd Revised edition edition (1 February 1987)
- 3. Principles of physical chemistry by Prutton and Marron. (The Macmillan Company; 4th edition (1970)
- 4. Text Book of Physical Chemistry by Soni and Dharmahara. Sulthan Chand & sons.(2011).
- 5. Text Book of Physical Chemistry by Puri, Sharmaand Pattania. chand and Co.(2017)
- 6. Thermodynamics by Rajaram. Vishal Publishing Co,(2013)

Semester - VI

Laboratory Course

Paper VII

Qualitative and Spectral Analysis of Organic Compounds:

45hrs (3 h/w)

Qualitative analysis: Identification of an Organic compound through the functional group analysis, determination of melting points/boiling points, functional group tests and preparation of suitable derivatives of the following:

Carboxylic acids, phenols, amines, urea, thiourea, carbohydrates, aldehydes, ketones, amides, nitro hydrocarbons, ester and naphthalene.

Spectral analysis Determination of structures from combined spectral data (IR, ¹H-NMR and Mass): Minimum of five problems.

B.Sc. Chemistry III Year Semester-VI, Paper-VIII Elective-A (3 Credits)

Medicinal Chemistry

45Hrs

Unit- I:Introduction and Terminology

11Hrs

S6-E-A-I: Diseases: Common diseases, infective diseases—insect borne, air-borne, water-borne and hereditary diseases.

Terminology in Medicinal Chemistry: Drug, Pharmacology, Pharmacophore, Pharmacodynamics, Pharmacokinetics, metabolites, anti metabolites and therapeutic index.

Drugs: Nomenclature: Chemical name, Generic name and Trade names with examples; Classification: Classification based on structures and therapeutic activity with examples. **ADME**: a) Absorption: Definition, absorption of drugs across the membrane – active and passive absorption, routes of administration of drugs. b) Distribution: definition and effect of plasma protein binding. c) Metabolism: definition, phase I and phase II reactions. d) Elimination: definition and renal elimination.

Unit-II: Enzymes and Receptors 11Hrs S6-E-A-II: Enzymes: Introduction. Mechanism and factors affecting enzyme action, Specificity of enzyme action (including stereo specificity), Enzyme inhibitors and their importance. Types of inhibition - reversible, irreversible and their subtypes with examples.

Receptors: Introduction, Drug action-receptor theory, Mechanism of drug action, concept of agonists and antagonists with examples. Drug receptor interactions involved in drug receptor complex. binding role of –OH group, -NH₂ group, quaternary ammonium salts and double bond. Structure – activity relationships of drug molecules, explanation with sulfonamides.

Unit- III: Synthesis and Therapeutic Activity of Drugs

12Hrs

S6-E-A-III: Introduction, synthesis and therapeutic activity of :

Chemotherapeutics: Sulphanilamide, dapsone, Pencillin-G (semi synthesis), Chloroquin, Isoniazid, Cisplatin and AZT.

Drugs to treat metabolic disorders: Anti diabetic - Tolbutamide; Antiinflammatiory – Ibuprofen; Cardiovascular- Glyceryl trinitrate; Antipyretic (paracetamol, aspirin) and Antacid-Omeprazole.

Drugs acting on nervous system: Anesthetics-definition, Classification-local and general. Volatile- Nitrous oxide, chloroform uses and disadvantages. Local anesthetics – benzocaine.

Unit- IV: Molecular Messengers and Health Promoting Drugs 11Hrs S6-E-A-IV: Molecular Messengers: Introduction to hormones and neurotransmitters, Thyroid hormones, Antithyroid drug-Carbimazol. Adrenaline: Adrenergic drugs- salbutamol, atenelol. Serotonin: SSRIs- fluoxetine. Dopamine: Antiparkinson drug- Levodopa.

Health promoting drugs: Introduction, sources, Deficiency disorders and remedy of Vitamins A,B, C, D, E K and micronutrients – Na, K, Ca, Cu, Zn and I.

Reference books

- 1. G.L. Patrick: Introduction to Medicinal Chemistry, Oxford University Press, New York. 2013.
- 2. Thomas Nogrady, Medicinal Chemistry, Oxford Univ. Press, New York. 2005.
- 3. David William and Thomas Lemke, Foye's Principles of Medicinal Chemistry, Lippincott Williams & Wilkins, 2008.

- 4. Ashutosh Kar Medicinal Chemistry, New Age International, 2005.
- 5. O.D.Tyagi & M.Yadav Synthetic Drugs by, Anmol Publications, 1998.
- 6. Medicinal Chemistry by Alka L. Gupta, Pragati Prakashan.
- 7.G. L. David Krupadanam, D.Vijaya Prasad, K.Varaprasad Rao, K. L. N. Reddy, C. Sudhakar, Drugs, Universities Press (India) Ltd. 2012.

.

B.Sc. Chemistry III Year Semester –VI, Paper-VIII Elective-B (3 Credits) Agricultural and Fuel Chemistry

45 Hrs

Unit I: – Pesticides 12Hrs

S6-E-B-I: Introduction, Definition, classification of pesticides based on use (target). Toxicity and chemical structure with examples. Adverse effects of pesticides and its impact on environmental pollution.

Synthesis, technical manufacture and uses of representative pesticides in the following classes: Organochlorines (Cypermethrin); Organophosphates (Parathion); Carbamates (carbaryl); Quinones (Chloranil), Anilides (Alachlor).

Pesticide formulations: Dusts, Granules, Wettable powders, Emulsions and Aerosols. **Biopestcides**: Introduction: Potential pesticidal plants of India, Role of Neem in plant protection-constituents, Azadirachtin and its role in pest control, Structure and mode of action of Pyrethrins(pyrethrin-1) and Pyrethroids (permethrin) and nicotinoids (Imidacloprid).

Unit II: – Fertilizers 11Hrs

S6-E-B-II: Introduction: (need of fertilizers), functions of essential plant nutrients (N, P, K), Classification formula and uses of fertilizers:

Nitrogenous fertilizers: Ammonium nitrate, Urea, Calcium Cyanamide, Calcium Ammonium Nitrate, Sodium Nitrate, Ammonium Chloride and their uses.

Phosphate fertilizers: Normal super phosphate, Triple Super Phosphate, Ammonium Phosphate and their uses.

Potassium fertilizers: Potassium chloride, potassium nitrate, potassium sulphate and uses. **Complex fertilisers:** Diaammonium Phosphate and mixed fertilizers their uses. Manufacture of urea and Super phosphate of lime and their reactions in the soil.

Biofertilizers – Introduction, definition, classification, Rhizobium, Azatobactor, Azospirillium, Azolla, Blue Green Algae, Vermicomposting and uses.

Organic farming: The principal methods, crop rotation, green manures and compost, biological pest control, and mechanical cultivation and uses.

Unit III: Energy Sources and Coal 11Hrs. S6-E-B-III: Review of energy sources (renewable and non-renewable). Classification of fuels and their calorific value.

Coal: Uses of coal (fuel and nonfuel) in various industries, its composition, carbonization of coal. Coal gas, producer gas and water gas—composition and uses. Fractionation of coal tar, uses of coal tar bases chemicals, requisites of a good metallurgical coke, Coal gasification (Hydro gasification and Catalytic gasification), Coal liquefaction and Solvent Refining.

Unit IV: Petroleum, Petrochemical Industry and Lubricants 11Hrs. S6-E-B-IV: Petroleum and Petrochemical Industry: Composition of crude petroleum, Refining and different types of petroleum products and their applications.

Fractional Distillation - Principle and process, Cracking -Thermal and catalytic cracking, Reforming of Petroleum and non-petroleum fuels (LPG, CNG, LNG, bio-gas, fuels derived from

biomass), fuel from waste, synthetic fuels (gaseous and liquids), clean fuels. Petrochemicals: Vinyl acetate, Propylene oxide, Isoprene and their uses.

Lubricants: Classification of lubricants, Properties and functions of lubricants (viscosity index, cloud point, pour point) and their determination. Lubricating oils (conducting and non-conducting) Solid and semisolid lubricants, synthetic lubricants.

Reference books

- 1. N. N. Melnikov, Chemistry of pesticides; Springer-Verlag- Technology & Engineering (2012).
- 2. Thomas A. Unger Pesticide Synthesis Handbook; Elsevier, (2000).
- 3. R. Cremlyn Pesticides; John Wiley, 1980.
- 4. A. K. Kolay Manures and Fetrtilisers; Published by Atlantic (2007).
- 5. Stocchi, E. Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK (1990).
- 6. Jain, P.C. & Jain, M. Engineering Chemistry Dhanpat Rai & Sons, Delhi.
- 7. Sharma, B.K. & Gaur, H. Industrial Chemistry, Goel Publishing House, Meerut (1996).

Semester - VI

Laboratory course

Experiments in Physical Chemistry-II

Paper VIII (Physical Chemistry)

45hrs (3 h/w)

1. Kinetics

- a) Determination of specific reaction rate of the hydrolysis of methyl acetate catalyzed by hydrogen ion at room temperature.
- b) Determination of rate of decomposition of hydrogen peroxide catalyzed by FeCl₃.

2. Electrochemistry

A. Potentiometry:

- a) Determination of redox potential of Fe^{2+}/Fe^{3+} by potentiometric titration of ferrous ammonium sulphate vs. potassium dichromate.
- b) Precipitation titration of KCl vs. AgNO₃ -Determination of given concentration of silver nitrate.

B. pH metry:

- a) pH metric titration of strong acid (HCl) vs. strong base- Determination of the concentration of the given acid.
- b) pH metric titration of weak acid(acetic acid) with strong base(NaOH).- Determination of acid dissociation constant (K_a) of weak acid.

3. Conductometry:

Determination of overall order: Saponification of ethyl acetate with NaOH by conductance measurements.