
NFTAPE Fault Injector for Win32 Applications
Sandeep Yenugula

 Final Year Under Graduate,
Department of Computer Science

and Engineering
Indian Institute of Technology

Kharagpur,
India-721302

ysandeep@iitkgp.ac.in

Zbigniew Kalbarczyk
Principal Research Scientist,
Center for Reliable and High-

Performance Computing
University of Illinois at Urbana-

Champaign
1308 W. Main St., Urbana, IL- 61801

kalbarcz@illinois.edu

Cuong Pham
Software Engineer,

Center for Reliable and High-
Performance Computing

University of Illinois at Urbana-
Champaign

1308 W. Main St., Urbana, IL- 61801

phammanhcuong@gmail.com

 Ravi K.Iyer
Director,

Coordinated Science Laboratory
University of Illinois at Urbana-

Champaign
1308 W. Main St., Urbana, IL-61801

rkiyer@illinois.edu

Daniel Chen
Research Scholar,

Center for Reliable and High-
Performance Computing

University of Illinois at Urbana-
Champaign

1308 W. Main St., Urbana, IL- 61801

dchen8@illinois.edu

ABSTRACT
Fault injection techniques are widely used for assessing the
reliability of applications. NFTAPE is a software tool developed
for performing automated fault injections to evaluate the
reliability of applications. This poster demonstrates the design
and implementation of a fault injector which can be integrated
with the NFTAPE framework to support dependability
assessment of Windows applications.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]:Fault
Tolerance, Performance attributes, Reliability, availability, and
serviceability.

General Terms
Performance, Reliability

Keywords
 Automated fault injection, Fault Injector, Reliability evaluation.

1. INTRODUCTION

2. APPROACH

Debugger-based injection method is used to design the
injector. The approach is as follows:

• Design and implement a basic application debugger using
the APIs [4] provided by Windows operating system.

Copyright Notice

An application which can handle the data corruption and
perform efficiently even in the unseen situations is considered
reliable. Fault injection techniques are widely used for evaluating
the reliability of applications. Networked Fault Tolerance and
Performance Evaluator (NFTAPE), developed at the University
of Illinois, is a tool that performs automated fault injections and
characterizes the application’s sensitivity to errors. The key
component in the NFTAPE framework [1] that performs the
actual injections is called the fault injector. A fault injector
injects faults in an application to assess application sensitivity to
errors and evaluate the efficiency of the error detection and
recovery mechanisms within the application. This assists the
designer in enhancing the reliability support.

The wide use of the Windows based systems [2], the
robust operation of Windows application becomes of paramount
importance. In this context, development of a fault injector for
Windows applications becomes essential in enabling rapid and
accurate evaluation of reliability of applications executing on top
of Windows operating system. The fault injector presented in this
poster focuses on conducting injections in the user space of the
target application.

mailto:ysandeep@iitkgp.ac.in
mailto:kalbarcz@illinois.edu
mailto:phammanhcuong@gmail.com
mailto:rkiyer@illinois.edu
mailto:dchen8@illinois.edu

• Extend the developed simple debugger to support automated
fault injection to text, data, and stack memory of an
application.

• Make the injector compatible with the NFTAPE architecture
and existing injectors for Linux and Solaris systems [3].

3. IMPLEMENTATION
The programming language used for implementation of the fault
injector is C++ and it is done in “Visual C++ 2008 Express
edition” Environment.

The fault injector can conduct injections in the user space
of Windows-based applications. The fault injector allows the user
to create breakpoints at a specific address location of the target
application and perform the injections when the breakpoint is
triggered. The format of the input arguments to the injector is
shown in Table 1.

Table 1: Input Format

Value
(>1000)

Value1byte-
4byte

OverWrite/
Add/BitFlip

Text/Data/
Stack

0x4040100x401291Stack.exe

Wait Time
(milli sec)

Mask DataMask
Size

Mask
Function

Injection
Type

Destination
Address

Breakpoint
Address

Process
Name

Value
(>1000)

Value1byte-
4byte

OverWrite/
Add/BitFlip

Text/Data/
Stack

0x4040100x401291Stack.exe

Wait Time
(milli sec)

Mask DataMask
Size

Mask
Function

Injection
Type

Destination
Address

Breakpoint
Address

Process
Name

Argument 1: Name of the Target Process.
Argument 2: Address at which a breakpoint is to be set.
Argument 3: Address at which injection is to be done.
Argument 4: Type of injection (Text/Stack/Data).
Argument 5: How the injection should be done.
 1: Data Overwrite
 2: Add a value
 3: Bit Flip
Argument 6: size of the data to be modified(1–4bytes).
Argument 7: Data to be injected.
Argument 8: The wait-time for triggering the breakpoint.

The fault injector waits for certain time (specified by the
user as argument 8) for the breakpoint to get triggered. The
breakpoint is deleted if it is not triggered within the specified
time. Note that since an exception cannot be caught within the
time less than a second, the value passed as argument 8 should
not be less than a second. The working of the Windows fault
injector is shown in Figure 1.

Attach to an active process specified by name

Detach the target process

Exit the Injector

Create a breakpoint at specified address

Break point triggered
in wait time?

Delete the breakpoint Corrupt the Data

YesNo

Start

Figure 1: Operation of the Fault Injector for Windows
Applications

The injections are performed assuming that the
user provides the address location within the text/data/stack
memory segment of an instruction or data to be corrupted.

Automation of the injection process:
In order to automate the injection process, a software

utility is implemented to: (i) read the input from a file which
contains the fault injection targets (i.e., the memory locations to
be corrupted), (ii) invokes the fault injector, (iii) waits till the
injector terminates, (iv) fetch (from the target file) the next
target location.

4. RESULTS

The developed fault injector was tested on a benchmark
application.

Description of Test Application:
The test application uses three local variables i, j and

sum and a global variable gv. The main() function calls a local
function add(), which adds the values of i and j and stores the
result in the variable sum. The application increments i by 5, j by
25 and gv by 1 during each cycle and then prints the values of i,
j, sum and gv.

The above described application is tested with the following test
cases (see Table 2).

Table 2: Test cases for the injector

1001994110x4040100x401291Stack.exe

300204120x380x401366Stack.exe

200004120x340x40131eStack.exe

Wait Time
(milli sec)

Mask DataMask
Size

Mask
Function

Injection
Type

Destination
Address

Breakpoint
Address

Process
Name

1001994110x4040100x401291Stack.exe

300204120x380x401366Stack.exe

200004120x340x40131eStack.exe

Wait Time
(milli sec)

Mask DataMask
Size

Mask
Function

Injection
Type

Destination
Address

Breakpoint
Address

Process
Name

0x404010 is the address of the global variable gv.
0x38 is the offset of the local variable i of the local function add.
0x34 is the offset of the local variable j declared in the main
function.

The results obtained by using these test cases on the test
application are shown in Figure 2.

Figure 2 : Results

• With the first injection (test case 1: Table 2) the value of gv
is changed to 99 from 134.

• With the second injection (test case 2: Table 2) the value of
variable j is changed locally in the function add() to 0 and
hence, the variable sum prints the value of i. As the data
changed is local to function add(), it does not affect the next
addition.

• With the third injection (test case 3: Table 2) the value of
variable j is changed in the main() function from 10225 to 0
and as the change is made in main, it is persistent.

5. CONCLUSION

This poster demonstrated the implementation of a fault
injector that can be used for assessing the reliability of Windows
applications. The fault injector can perform injections to user
space of an application. The prototype is tested on a benchmark
application. The target application can be hanged by corrupting
with an invalid instruction. This injector can be used on any
Window application for assessing the reliability, but the user
needs to ensure that the breakpoint address and the destination
address specified are valid. This research can be extended to
enhance the fault injector to perform injections in the kernel
space of Windows systems.

6. REFERENCES
[1] D. Stott, B. Floering, D. Burke, Z. Kalbarczyk and R.K.

Iyer, “NFTAPE: A Framework for Assessing Dependability
in Distributed Systems with Lightweight Fault Injectors,” in
Proc. of 4th Int. Computer Performance and Dependability
Symposium, IPDS’00, pp.91-100, 2000.

[2] Percentage of usage of operating systems:
http://commons.wikimedia.org/wiki/File:Operating_system_
usage_share.svg.

[3] D. Chen, G. Jacques-Silva, Z. Kalbarczyk, R. K. Iyer, B.
Mealey: “Error Behavior Comparison of Multiple
Computing Systems: A Case Study Using Linux on
Pentium, Solaris on SPARC, and AIX on POWER”, in
Proceedings of 14th IEEE Pacific Rim International
Symposium on Dependable Computing, pp. 339-346, 2008.

[4] MSDN Library: Debugging Functions:
http://msdn.microsoft.com/en-
us/library/ms679303(VS.85).aspx

http://commons.wikimedia.org/wiki/File:Operating_system_
http://msdn.microsoft.com/en-

