

Government City College (A) Nayapul, Hyderabad

Nayapul, Hyderabad Affiliated to Osmania University Accredited with 2.76 B⁺⁺ Grade

Department of Physics

MSc Physics - Course Outcomes

Semester I Paper 1: Mathematical Physics

CO1	Remember: Recall the significance and fundamental concepts of
	Legendre's and Bessel's Differential Equations in the context of
	physics.
CO2	Understand: Grasp the importance and applications of Hermite and
	Laguerre Differential Equations in various physical phenomena.
CO3	Apply: Apply knowledge of Fourier and Laplace transforms to practical
	physics problems, demonstrating an understanding of their
	applications.
CO4	Analyze: Demonstrate the ability to solve complex problems involving
	matrices, comprehend tensors, and utilize C programming to analyze
	physical systems.
CO5	Create: Integrate mathematical tools to solve numerical physics
	problems and utilize these methods to further academic research and
	advanced studies in physics.

Paper 2: Classical mechanics

CO1	Apply: Able to apply classical mechanics and modified equations to
	understand conservation theorems and explore the framework of
	Minkowski space.
CO2	Understand: Understand the concept of D'Alembert's principle and
	Hamilton's principle in the realm of physics.
CO3	Analyze: Acquire and analyze knowledge of the Principle of Least
	Action and effectively apply Hamilton's equations.
CO4	Analyze: Grasp and dissect the concepts of Lagrangian formulation for
	continuous systems and Hamiltonian formulation.
CO5	Create: Cultivate the skill to differentiate between quantum mechanics
	and classical mechanics and creatively apply this knowledge to various
	physical scenarios.

Paper 3: Quantum Mechanics

CO1	Remember : Recognize the significance of quantum mechanics over classical mechanics, acknowledging its impact in modern physics.
CO2	Apply: Apply the axioms of quantum mechanics, utilize operators and wave functions, and solve the Schrödinger equation to determine Eigenvalues for simple systems like the harmonic oscillator and hydrogen-like atoms.
CO3	Understand : Comprehend the basic commutation relations in quantum mechanics, particularly for angular momentum operators, and understand their implications.
CO4	Analyze: Analyze and differentiate between concepts such as scattering cross-section, total scattering cross-section, and scattering amplitude in quantum mechanics.
CO5	Create : Integrate and employ concepts from modern and nuclear physics to innovate and solve complex problems in various branches of science.

Paper 4: Electronics

CO1	Understand: Gain an understanding of the operational principles of amplifiers and oscillators in electronic circuits.
CO2	Remember: Recall the foundational knowledge of operational amplifiers, as well as analog-to-digital (A-D) and digital-to-analog (D-A) converters.
CO3	Apply: Apply the concepts of Boolean algebra and Karnaugh maps (K-map) to simplify logic expressions, and utilize this understanding to work with logic gates and counters.
CO4	Understand: Comprehend the basic functions and programming of microprocessors.
CO5	Create: Use the acquired knowledge creatively to troubleshoot and solve practical problems in printed circuit boards (PCBs) and electronic appliances

Semester II

Paper 1: Electromagnetic Theory

CO1	Remember: Recall the significance and foundational principles of
	Maxwell's Equations in the context of electromagnetic theory.
CO2	Understand: Understand the propagation of electromagnetic (EM)
	waves in various media and comprehend how different conditions
	affect wave behavior.
CO3	Apply: Apply basic theories of the interaction between electromagnetic
	waves and matter to predict and explain outcomes in practical
	scenarios.
CO4	Analyze: Analyze different electromagnetic fields and radiating
	systems to understand their design and functioning.
C05	Create: Use the knowledge of wave propagation in different media to
	innovate and develop applications like antennas, RADAR systems, and
	other advanced communication devices.

Paper 2: Statistical Mechanics

CO1	Remember: Recall the fundamental concepts of entropy, statistical
	ensembles, and Liouville's theorem.
CO2	Understand: Understand the principles and applications of Bose-
	Einstein, Maxwell-Boltzmann, and Fermi-Dirac statistics.
CO3	Apply: Apply the concept of Bose-Einstein condensation and explore the phenomenon of superfluidity in Helium II
CO4	Analyze: Analyze theoretical models such as the Bragg-Williams approximation and the Ising model to understand phase transitions and critical phenomena.
CO5	Create: Integrate and creatively apply statistical mechanics concepts
	to solve problems at both the micro and macroscopic levels in various scientific and engineering contexts.

Paper 3: Quantum Mechanics- II

C01	Apply: Apply both the time-dependent and time-independent Schrödinger equation to various potentials, demonstrating an understanding of their implications in quantum systems.
CO2	Analyze: Analyze quantum systems using approximate methods such as the variational method, perturbation theory, and the Born approximation to find solutions to the Schrödinger equation.
CO3	Remember: Recall the fundamentals of spin, angular momentum states, angular momentum addition rules, and the behavior of identical particles in quantum mechanics.
CO4	Understand: Understand the application of quantum mechanics principles in advanced theoretical studies and nanotechnology.
CO5	Create: Create new materials and explore their functions within the electromagnetic spectrum using the principles of quantum mechanics.

Paper 4: Solid State Physics

CO1	Remember: Recall the significance of different crystal structures in
	materials science.
CO2	Understand: Grasp the concepts of 1D and 2D lattice vibrations, the
	various theoretical approaches to them, and their role in determining
	the thermal properties of solids.
CO3	Apply: Apply the basic theories of solids to distinguish between
	metals, semiconductors, insulators, and comprehend the Fermi theory.
CO4	Analyze: Analyze the methods of crystal growth techniques and
	identify the different types of defects that can occur in solids.
CO5	Create: Synthesize new materials using the knowledge gained from
	the study of materials and nanoscience, targeting specific applications.

Semester III

Paper 301- Modern Optics

CO1	Remember: Recall the significance of lasers across various fields such as industrial, medical, and cosmetic applications, understanding their impact and versatility.
CO2	Understand: Grasp the different types of laser systems, their operational principles, and their respective uses in technology and research.
CO3	Apply: Apply the fundamental theories of holography to understand and create different types of holograms for various applications.
CO4	Analyze: Analyze the principles of Fourier optics and nonlinear optics to understand their implications in the advancement of optical technologies.
CO5	Create: Utilize knowledge of optics to innovate in the field of light generation, including the use of lenses and parametric light generation techniques, for advancing optical applications.

Paper 302: Advanced Solid-State Physics

CO1	Understand: Gain an understanding of the basic mechanical properties
	of materials, including elasticity, plasticity, toughness, and hardness.
CO2	Apply: Apply knowledge to interpret stress vs. strain curves, extracting
	key mechanical properties such as the tensile modulus, yield strength,
	and ultimate tensile strength.
CO3	Understand: Comprehend the role of grain boundaries in the
	deformation of materials and how microstructural features influence
	material properties.
CO4	Analyze: Analyze various material characteristics, understanding their
	significance and application in the materials industry, including selection
	criteria for different engineering applications.
CO5	Apply: Apply techniques to identify different types of materials and
	understand the mechanisms of corrosion, including preventive measures
	and material selection to mitigate corrosion effects.

Paper 303: Electronic Instrumentation

CO1	Remember: Recall the different types of errors and the characterization
	of systems based on their order, understanding the basics of system
	analysis.
CO2	Apply: Apply knowledge in the fabrication of amplifiers and filters,
	learning the practical aspects of designing and building these
	components.
CO3	Apply: Utilize amplifiers and filters in electric circuits, demonstrating
	their application in enhancing or modifying signals according to specific
	requirements.
CO4	Understand: Grasp the concept of various types of signal generators
	and analyze the factors that affect signal quality and integrity.
CO5	Create: Engage in the construction of digital displays and recording
	systems, understanding their characteristics and the technology behind
	their operation.

Paper 304: Embedded Systems and its Applications

CO1 CO2	 Understand: Gain a comprehensive understanding of the 8051 microprocessor's block diagram, including its architecture and how its components interact. Apply: Apply knowledge of logical instructions and programming
	techniques to perform operations such as logic, comparison, rotation, and swapping.
CO3	Understand: Comprehend the functionalities of microcontrollers, including their timers, and the process of analog to digital conversion, emphasizing how these components interact within a microcontroller system.
CO4	Analyze: Analyze the applications of microprocessors and microcontrollers across various fields, understanding their role in the design and implementation of electronic systems.
CO5	Understand: Gain insight into the operation of counters, registers, and memory devices, understanding how these components are integrated and utilized in microprocessor and microcontroller systems.

Semester IV

CO1	Remember: Recall the fundamental concepts of various nuclear models and the principles of nuclear force that explain the structure and behavior of nuclei.
CO2	Understand: Understand the processes and underlying theories of a-
	decay, including Gamow's theory, and β -decay, based on Fermi's theory,
	and their implications in nuclear physics.
CO3	Apply: Apply knowledge of the Compton Effect, as well as the operation
	and application of scintillation and solid-state detectors in the
	measurement and analysis of nuclear phenomena.
CO4	Analyze: Analyze the principles and outcomes of nuclear reactions and
	delve into the basic concepts of particle physics, understanding the
	forces and particles that constitute the nucleus.
CO5	Understand: Grasp the significance of nuclear energy, including its
	generation, applications, and impact on society, with an emphasis on its
	role in power generation and medical applications.

Paper 402: Spectroscopy

CO1	Remember: Recall the significance of atomic and alkali spectra in understanding the fundamental properties of elements and their
	electronic configurations.
CO2	Understand: Grasp the different types of molecular spectra and the
	mechanisms by which they are produced, including electronic,
	vibrational, and rotational transitions.
CO3	Apply: Apply basic principles of Raman and Infrared (IR) Spectroscopy
	to analyze molecular structures and dynamics.
CO4	Analyze: Analyze the principles and applications of Nuclear Magnetic
	Resonance (NMR) and Electron Spin Resonance (ESR) spectroscopy in
	detailed molecular and electronic structure determination.
CO5	Create: Utilize the knowledge of molecular, Raman, ESR, and NMR

spectroscopies creatively to solve complex problems in chemistry,
biology, and materials science, enhancing the understanding of
molecular and atomic structures and their interactions.

Paper 403: Instrumentation for measurement and Data transmission

CO1	Understand: Gain an understanding of the operational principles and
	applications of various transducers for strain and pressure
	measurements.
CO2	Understand: Comprehend the methodologies and technologies used in
	measuring pressure, temperature, and flow in different systems.
CO3	Apply: Apply concepts of process control, including the use of transfer
	functions, to manage and optimize different systems effectively.
CO4	Understand: Grasp the fundamentals of analog and digital data
	acquisition systems, including their design and operational nuances.
CO5	Apply: Utilize knowledge of flow measurement techniques, telemetry,
	and multiplexing in practical applications to enhance data transmission
	and monitoring in various engineering contexts.