Program Coordinator: Dr.Abhijit Kantankar AVISCAR

(Augmented Visionary for Integrated Student Centric Activities in Research)

Department of Chemistry started the unique platform to encourage the students to participate in active research projects under the programme called AVISCAR (Augmented Visionary for Integrated Student Centric Activities in Research). In this programme students were sensitized to research and innovations with unique and feasible approaches. The programme focused on application of academic knowledge in designing and implementing the Research prototypes to solve the specific research problems and obstacles. In this programme students share their views and come up with unique approach where the Teacher provides proper guidance to materialize the idea to be implemented. The student research projects comes under AVISCAR programme utilize the existing resources and materials with the motto of "No-Cost Low Cost" approaches. The motif of the AVISCAR is based on modus operandi, "Why Not?" which creates the enthusiasm in the subject through logical and critical thinking of existing knowledge. All the student Research projects designed with interdisciplinary modes which need the divergent academic fusions. The projects designed on fundamentals of the Chemistry as Central science with inter-connected aspects of other branches of Sciences to metamorphose the idea into applications.

OBJECTIVES OF THE PROGRAMME

- Create the interest in students towards Research.
- Application of the academic knowledge to solve the issues pertaining to the day to day life.
- Design the projects based on Green and eco-friendly schemes.
- No-Cost Low-Cost approach should be incorporated in the research.
- Multidisciplinary designs should be adopted to minimize the technical complexity and reduce the cost expenditure.

OUTCOMES OF THE PROGRAMME

Innovative thinking and critical application of academics inculcated in the students to solve the contemporary research problems with minimum resources.

Major Student Research Projects of the "AVISCAR"

PROJECT TITLE: Antimicrobial Silver Nanoparticle coating on Paper currency notes and Mobile phones using Eco-friendly Tollens process for prevention of infectious diseases

AVISCAR

Contaminated Paper currency notes may cause a public health risk by spreading nosocomial (Hospital acquired infections) infections when simultaneous handling of food and in addition to this, also cause normal sort of contaminations in persons with immunodeficiency. Especially when banknotes recovered from hospitals may be highly contaminated by *Staphylococcus aureus*, *Salmonella* species and *Escherichia coli*. Laboratory studies revealed that methicillin-resistant *S. aureus* can easily survive on paper currency notes, whereas *E. coli*, *Salmonella* species and viruses, including human influenza virus, Norovirus, Rhinovirus, hepatitis A virus and Rotavirus, which can be transmitted through hand contact. Large-scale, 16S rRNA, metagenomic studies and culturomics have the capacity to dramatically expand the known diversity of bacteria and viruses on money and fomites.

Figure 1: Depiction microbes on paper currency notes (**Courtesy:** *Future Microbiol.* (2014) 9(2), 249–261).

3 DEPARTMENT OF CHEMISTRY | Tara Government College, Sangareddy(A)

Similarly, constant handling of the Mobile phone by different users exposes it to an array of microorganisms, and makes it a good carrier for microbes, especially those associated with the skin resulting in the spread of different microorganisms from user to user. Because of the multifaceted benefits of the mobile phones, it is easy to overlook its hazard to health; this is against the background that many users may have no regard for personal hygiene, and the number of people who may use the same phone. Many research studies has shown that the mobile phone could be a health hazard with tens of thousands of microbes living on each square inch of the phone .

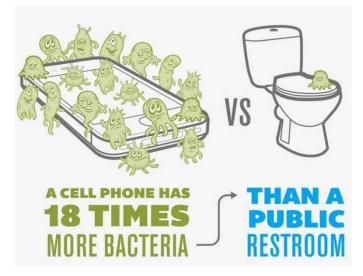
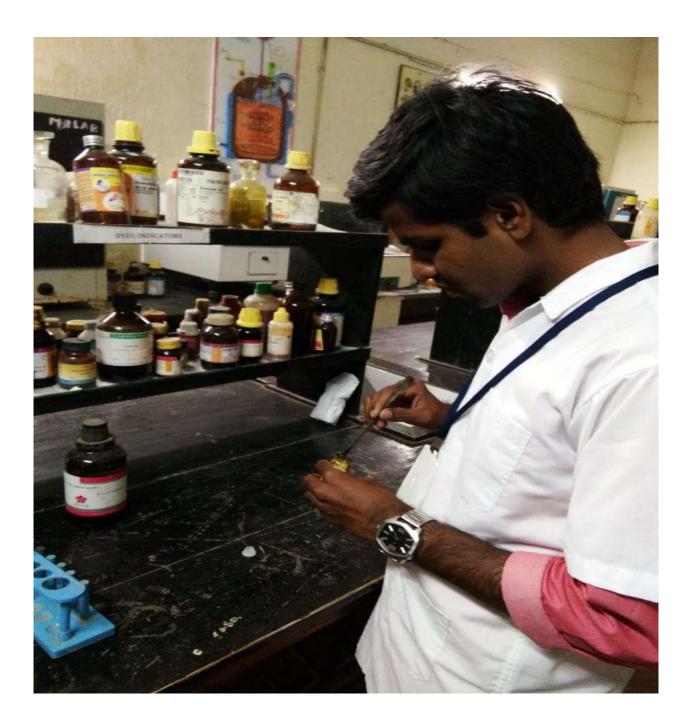


Figure 2: Depiction microbes on Mobile phones.

(Courtesy: https://www.phonesoap.eu/medical-professional)

However, Nosocomial infections caused by microorganisms which usually originated from hospital environments and cross-contamination due to the incorrect use of medical equipment can be prevented or reduced by replacing normal equipments with Silver nanoparticles (AgNPs) coated medical devices. Many medical studies have revealed that silver is effective against more than 650 pathogens, having a broad spectrum of activity. Further its use in the form of Nanoparticles enhances this property up to great extent and allows its use in a wide range of applications. Therefore, in recent years Nano-silver is considered as one of the most viable alternatives to antibiotics because it seems to have high potential to solve the problem of multidrug resistance, which is often observed in several bacterial strains.

Nanoparticles are usually a clusters of atoms, with sizes ranging between 1 and 100 nm, whereas the word "Nano" is used to indicate one billionth of a meter. Because of the variation in the size of AgNPs, they exhibited variety of physical and chemical characteristics to that of metallic silver.

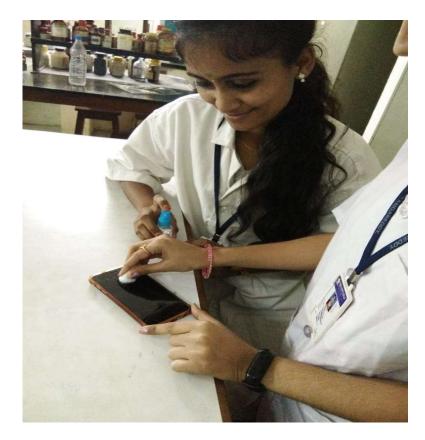

S.No.	Name of the Student	Roll Number	Group	Year
1	A.Bhanupraksh	17016058445001	B.Sc.(BZC)	III
2	J.Manjulatha	17016058457025	B.Sc.(MZC)	III
3	A.Pranaya	17016058481001	B.Sc.(BCCA)	III
4	P. Pooja	17016058445028	B.Sc.(BZC)	III
5	J.Swetha	17016058457026	B.Sc.(MZC)	III
6	G.Sai Ganesh	17016058457023	B.Sc.(MZC)	III

Students involved:

In this context, we have been used silver nanoparticles (AgNP) to coat the surfaces of both Paper currency notes and mobile phones for the prevention of microbial contamination.

From this project it is clear that AgNP coating on Paper currency notes and Mobile phone screens by using innovative modified Tollens process provide an excellent protection against microbial contamination which will be fatal in nosocomial infections caused by microorganisms in hospitals when contaminated Paper currency notes and Mobile phones handled by healthcare associates. The problem of cross contamination will be serious in patients with immunodeficiency disorders like HIV/AIDS or patients who were underwent organ transplantation to whom usually immune-depressant drugs were given. The outlook of the projects also opens new avenue for public health care aspects especially in situations

where multidrug bacterial strains like *mycobacterium tuberculi* evolved by excessive use of antibiotics. The process is very convenient, ecofriendly and economical to scale up for bulk usage.



Augmented Visionary for Integrated Student Centric Activities in Research

8 DEPARTMENT OF CHEMISTRY | Tara Government College, Sangareddy(A)

SUGGESTIONS:

Further studies should investigate the combination of AgNPs and antibiotics against resistant hospital strains for the development of new materials and substances for medical application. As "*prevention is better than cure*" the following suggestions were made basd on this project:

- The paper currency notes should be printed with inks impregnated with the AgNP.
- Automatic Teller Machines (ATM) should be reloaded with AgNP suspension for spraying on used Paper currency notes.
- The interiors of hospitals to be painted with AgNp impregnated paints to prevent Nosocomial infections and to keep the intensive care units (ICU) hygiene and sterile.
- To prevent contagious diseases like swine flu, the public transport utilities like buses and metros to be coated with AgNP impregnated paints.
- The mobile phone screen guards to be manufactured with AgNP incorporated polymers.

PROJECT TITLE: Qualitative Analysis of Absorption of Phenolic Drugs by Oryza Sativa

Absorption of PAOM's like drugs in plants lead to multilevel biochemical combination with phyto-chemicals which further generates series of physiological changes in plants. The interaction between plants biochemical system and drugs may cause several complex compounds, further they can involve in biosynthesis of new molecules like free radicals or bio organic conjugates. In most of the cases plants do not tolerate high concentrations of the drugs and detoxification process occurs by either bio combination with plant proteins and organic acids or bio degradation of the foreign compounds (drugs) by enzymatic action.

Quantitative analysis of absorption of drugs by plants is very important aspect to study the biological fate of absorbed drugs in plants. Qualitative analysis is helpful to characterize the bio organic conjugate of drugs, Detoxification process and precursor activity of ingested drugs. Quantitative analysis of absorbed drugs by plants was manifested by spectro analytic techniques like FTIR, H¹-NMR and Mass spectroscopy. The present work aimed at study the biological fate of the

drugs which were ingested in higher concentration to the plants and also focused on

distribution of drugs in various parts of plants. The Experiments were performed with *Oryza* sativa L. plants in hydroponic culturing for short duration exposure of high concentration of drugs.

The selected plant, *Oryza sativa L*. absorbs and metabolizes the drugs APAP and ASA. Extracts of *Oryza sativa L*. plants (which were treated with APAP and ASA hydroponically) were analyzed spectroscopically. The traces of APAP and ASA were detected in these extracts along with unknown metabolites of these drugs. The reports showed that drugs were absorbed by plants degraded into fragments and these fragments combined with phytochemicals to form bio-conjugates. The analytical data was not prominent to suggest any precursor activity of these drugs in the plant.

PROJECT TITLE: Electro Kinetic Enhanced Phytoremediation of ASA and APAP by *Oryza Sativa L*. plants

Electro Kinetic Enhanced Phytoremediation (EK-PR) technique is one of the reliable and efficient procedure for the phytoremediation of pollutants from aqueous medium. The scope of this method is evolving in the present scenario as remediation of pollutants becoming a challenging task. EK-PR can be coupled with variety of plants including hydrophytic and non-hydrophytic plants. In the present study modified EK-PR is coupled with Oryza Sativa L. plants (paddy plants) to remediate Acetyl Salicylic Acid (ASA) and APAP (Acetyl Para Amino Phenol) from aqueous solution. 11th leaf paddy plant absorbs 6.1% more APAP and 3.1% more ASA compared to the plant incubated under 24 hours of normal conditions under EK-PR method. EK-PR(Electro Kinetic Enhanced Phytoremediation) is a bio electro restoration technique strategically designed and developed for in situ treatment of contaminated soils. The combination of EKR (Electro Kinetic Remediation) and phyto remediation enhances the effectiveness of remediation process and overcome the limitations of phyto remediation. (Hodko et.al., 2000; Bedmar et.al., 2009). This process involves action of electrolysis using low intensity electric field potential and phyto absorption of contaminants from soil. EKPR consists of application of low intensity electric field in the vicinity of plant grown in the contaminated soil. Effects of Electric field on plants characteristics was reported first by Lemstorm(1904). He stated that plants tolerate electric field, stay greener and shows an increase in yield. This experimental finding inspired to develop newer strategies of combining EKR with phytoremediation for effective environmental restoration. In the EK-PR cleaning up process of contaminants performed by plants and this process is enhanced by electric field by increasing bioavailability of contaminants.

Factors affects the efficiency of EK-PR are;

- 1) Use of AC/DC current
- 2) Voltage level
- 3) Frequency of voltage (continuous or periodic)
- 4) pH level of soil/water

5) Addition of Facilitating/ Chelating agents

In the EK-PR technology, due to applications of electric field which effectively brings large amount of soluble heavy metal ions towards plant's root system, this sometimes result stress conditions for the plants. Thus plants with high tolerance level and hyper accumulating capacity are selected for EK-PR application (Bedmar et.al., 2009). Absorption of Drugs by plants from their aqueous solutions was greatly increased by Electro-stimulation. ASA and APAP get ionized in aqueous solution and moves faster due to electro-stimulation. This might enhance probability of interaction of drug molecules and root system which leads increased absorption. The application of this knowledge in remediation of other highly toxic organic pollutants will be helpful to redesign the phyto-remediation approaches.

S.No.	Name of the Student	Roll Number	Group	Year
1	K.Jyothsna	6058-20-441-037	B.Sc.(MPC)	II
2	Ch.Eshwari	6058-20-441-014	B.Sc.(MPC)	II
3	T.Vaishnavi <i>Note: Girraj Govt.</i> <i>College (A),</i> <i>Nizamabad, as a Part of</i> <i>MoU.</i>	19055005572070	B.Sc.(BtBC)	III

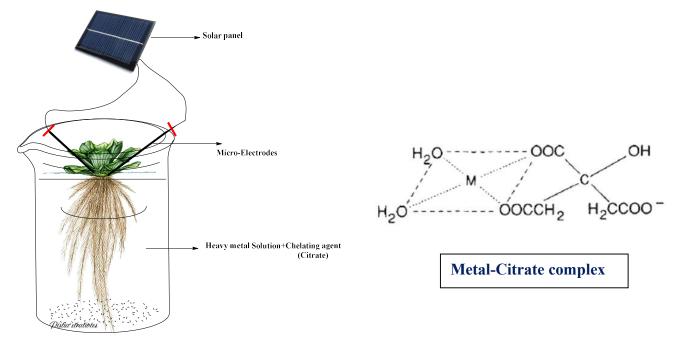
PROJECT TITLE: Impact of Paracetamol and Aspirin on germination of paddy seeds (*Oryza sativa L.*)

Morphological characters of plant are diagnostic for quantitative and qualitative study of physiological changes by exogenous and endogenous modulations. The morphological characters related to plant development include study of plant anatomy and plant physiology. The plants constantly produce new tissues and phytostructures throughout their lifespan from meristem, hence a living plant always has embryonic tissues (Bäurle et al., 2003). This aspect makes plant development differ from animals.

Morphological characteristics related to growth factors have greater attraction for studying the impact of physical factors like light, gravity etc., Growth in the plants is not only account of cell division but also due to cell elongation. Both the things are mediated by specific plant hormones and Plant Growth Regulators (PGRs) (Ross et al.,1983). Usually these PGRs produced endogenously and show their deep impact on plant morphology. Certain exogenous chemical compounds also show significant impact on plant morphology by direct interaction or modulating plant physiology.Pharmaceutical industrial effluents and drugs contaminants may also affect seed germination. The Physiologically Active Organic Molecules (PAOMs) like drugs may interact with enzyme of seeds which will play an important role in germination process. The reclaimed water from pharmaceutical industries always contains PAOMs or metabolites of drugs which will interact with seeds of the field that was shown.

In this context, it is necessary to determine how the germination process will affected by the pharmaceutical products. The current laboratory experiment was designed to determine the effects of different concentration (01-50 ppm) of Paracetamol and Aspirin on seed germination in paddy (*Oryza sativa.L*).

There was mere research concerning the effects of pharmaceutical drugs on plant growth. The current experiment clearly indicated that Aspirin and Paracetamol showed incredible changes in morphological and vegetative parameters of *Oryza sativa L*. in many aspects. This is due to either the interaction of these Physiologically Active Organic Molecules directly with phyto-hormones /Growth Regulators or acts as growth regulators. The above said drugs gradually degraded by soil bacteria and environmental factors into their phenolic monographs (4-amino phenol in case of Paracetamol and Salicylic acid in case of Aspirin) which are more physiologically active as the polarity of functional group increases.

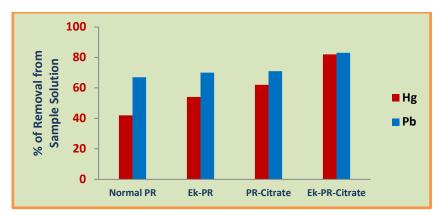

S.No.	Name of the Student	Roll Number	Group	Year
1	S.Shirisha,	605819578029	B.Sc.(MCCs)	III
2	M.Sucharitha	605821445067	B.Sc.(BZC)	II
3	Deepthi <i>Note: Girraj Govt.</i> <i>College (A),</i> <i>Nizamabad, as a Part of</i> <i>MoU.</i>	19055005572030	B.Sc(BtBC)	III
4	T.Akshitha Note: Girraj Govt. College (A), Nizamabad, as a Part of MoU.	19055005572067	B.Sc(BtBC)	III

Students involved:

Aspirin and Paracetamol showed considerable impact on seed germination. The gradual decrease in germination of paddy seeds with concentration of Aspirin and Paracetamol, suggests that plants were very sensible to PAOM's. Even in the range of ppm, Aspirin and Paracetamol retards seed germination severely. This experiment reveals that the physiologically active organic molecules (PAOM) like drugs shows significant impact not only on animals but also on plants to various extents.

Solar Cell Induced Electro-Kinetic Enhanced Phyto-Remediation of Toxic Heavy Metal Pollutants from Water using Hydrophytic Plants

In the Current situations where Industrialization is inevitable which consequently leads to pollution of natural resources, it is necessary to design environmental protection strategies using simple natural processes by applying concepts of 'Science and Technology'. In the current project we have focused on phytoremediation of Hg and Pb from sample solutions using Citrate as a Chelating agent under the reduced pH and Electro-kinetic induction of **6V** voltage with help of light weight solar panels which acts as renewable energy sources using Hydrophytic plant, *Pistia stratiotes*. Lemon Juice extract was used to provide Citrate and to maintain reduced pH conditions. The chemistry behind this project based on concepts Coordination complexes and Electrochemistry as electrochemical pumping of charged heavy Metal-Citrate complexes into plant roots with a steady rate.



The Chelated heavy metal complexes are stable and mild on plant cell hence the Phytoremediation process prolonged and maximum amount of heavy metal was removed from sample solution. The Modified Electro-kinetic enhanced Phyto-Remediation (**Ek-PR**) in

which small amount of current was passed through plants directly which enhance the heavy metal pumping into the plant. Selection of Citrate as a "Green Chelating agent" based on its chemical tendency to form stable and mobile charged Metal-Ligand complex which can be absorbed by plants under Ek-PR conditions. Reduced pH is useful to increase the mobility of heavy metal complexes and leach them from sediments and plant surfaces. Although efficiency of Ek-PR increases by using chelating agent like EDTA but at the same time these chelating agents (EDTA) shows negative impact on ecosystem and induces environmental issues.

It is evident from the results of the current research project is that the Citrate coupled Electro-kinetic Phytoremediation (Ek-PR) removes **82%** of Hg and **83%** of Pb from approximately 100ppm of heavy metal solutions in 96 hours at **5.2** pH which is nearly **40%** more in case of Hg under normal sort of Phytoremediation. Similarly Citrate coupled Ek-PR of Pb showed **16%** of increased Phytoremediation compared to normal conditions. The Strategic development of Phytoremediation plan depends on Plant's "Bio-concentration Factor (**BCF**)" value which must be greater than **1000**. In the current experiment BCF value for Hg is **1042** and for Pb it is **1164** under the Ek-PR-Citrate model. It is observed that absence of chelating agent drops the BCF value below 1000. Hence the Chelating agent is an essential aspect of Ek-PR.

The outlook of the projects also opens new avenue for Environmental protection especially in the restoration of polluted lakes and ponds using natural flora present in them like *Pistia*, *Icornia* etc. This process is very convenient, eco-friendly and economical to scale up for bulk usage. Another merit of this project is the usage of renewable energy source i.e.

solar panels for Electro-kinetic potential. This Modified Citrate coupled Ek-PR method is an effective method to remove heavy metals at higher concentrations.

Students ínvolved:

S.No.	Name of the Student	Roll Number	Group	Year
1	U.Kavya Sri	6058-19-457-028	B.Sc.(MZC)	III
2	E.Shivaleela	6058-19-457-007	B.Sc.(MZC)	III
3	Uroojunnisa	6058-19-457-029	B.Sc.(MZC)	III
4	Amrin	6058-19-457-001	B.Sc.(MZC)	III
5	N.Ranjitha	6058-19-457-013	B.Sc.(MZC)	III

PROJECT TITLE: Innovative approach for designing and developing ecofriendly bricks from Demolition waste using Clay Chemistry

Construction and Demolition waste management (C&DWM) has become a significant environmental concern in most of the India's urban cities as the C&D W generated in India is over 150 MT and accounts for more than 40% of the global C & D waste annually (*Jain*, 2021; Kolaventi et al., 2019). To address the crucial issue we designed an innovative approach for eco-friendly bricks from Demolition waste using the simple concepts of Clay Chemistry and modified Silicate Engineering. In the present project we have used the Demolition Waste (DW), which is added to clay in different percentages to made fired micro-bricks.

In the methodology have we have made FIVE categories of Brick composition to develop an efficient prototype-design. They are namely;

- 1. 100% Clay-sand Mixture (Control)
- 2. 50% Clay+50% Demolition waste(Category-I)
- 3. 75% Clay+25% Demolition waste(Category-II)
- 4. 45% Clay+3% CaO+2% charcoal+ 50% Demolition waste(Category-III)
- 5. 70% Clay+3% CaO+2% charcoal+ 25% Demolition waste (Category-IV)

By using above said composition different categories of Micro-Bricks were molded and set them on coal furnace at 400-600°C for 6hours. The hardened bricks were then analyzed for their conformation, strength and durability. The free Drop test performed to all the Brick samples to assess the material strength. In this method the dissociated weight (weight loss) of the sample was calculated by weighing the initial weight (W_1) and final weight after impact (W_2) and calculating the difference i.e. W_1 - W_2 . From the Drop test it is evident that Demolition waste provides strength to the Brick as it a good source of silica and calcium which plays an important role cross linking silicate formation with aluminium pyrosilicates of clay. **Category-I** sample displayed **10** times more strength compared to the control category samples which is made of normal-sand mixture.

Further addition of Charcoal and CaO provides an additional strength to the material as CaO acts as flux which facilitated the complex silicate formation during thermal treatment and charcoal acts as filler which doped in to interstitial space of silicate frame work of brick material, due to this **Category-III** and **Category-IV** samples showed **19** and **25** times more strength compared to control.

Addition of demolition waste to clay makes bricks lighter and stronger which reflects in their densities. Adding of **50%** of demolition wastes makes brick **1.4** times lighter than control category which certainly helpful in construction strategies. While doping of CaO and Charcoal slightly increases the density due to their filler properties.

The Durability of samples was tested using Hydro-percolation and Hydro-Disintegration tests. In this method samples were suspended in distilled water for 24 hrs and calculated the weight of percolated water using following formula;

Weight of Percolated water (W₄)= Wet weight (W₃)- Initial(Dry) weight (W₁).

All the samples showed more or less similar range of Hydro-percolation properties which demonstrated the durability of bricks made up of demolition waste is equal to that of normal clay bricks. Whereas, Hydro-Disintegration test showed all the bricks samples disintegrate **12-18%** less weight compared normal clay bricks (control) after 24 hours of water suspension process. From the above experimental observations it is clear that the present project will provide an efficient and effective Construction and Demolition waste

21 DEPARTMENT OF CHEMISTRY | Tara Government College, Sangareddy(A)

management (C&DWM) strategy.

Students involved:

S.No.	Name of the Student	Roll Number	Group	Year
1	K.Jyothsna	6058-20-441-037	B.Sc.(MPC)	III
2	C.Eshwari	6058-20-441-014	B.Sc.(MPC)	III
3	M.Rahul	6058-21-578-025	B.Sc.(MCCs)	II
4	V.Shiva Kumar	6058-21-578-042	B.Sc.(MCCs)	II
5	J.Bhavani	6058-20-578-011	B.Sc.(MCCs)	III
6	S.Barsa	6058-20-578-024	B.Sc.(MCCs)	III

PROJECT TITLE: Multilayered Adsorbent Infused Low Cost Hazardous Chemical Treatment Column

Heavy metals and other toxic hazardous chemicals found laboratory waste can be effectively treated with the innovative **MULTILAYERED ADSORBENT INFUSED LOW COST HAZARDOUS CHEMICAL TREATMENT COLUMN** developed by Chemistry students under the program of Augmented Visionary for Integrated Student Centric Activities in Research (AVISCAR).

Adsorption is a process in which solids come into contact with liquids or gases, and the mass transfer occurs from liquids to solids. Desorption is the reversal of this action. Adsorption operations take advantage of a solid's capacity to concentrate certain chemicals from a fluid on to its surface. Adsorbate refers to the adsorbed substance, while adsorbent refers to the solid substance. In the project we used waste water bubble and filled it with charcoal, quick lime, bentonite, celite, silica, clay and cellulose as multilayered adsorbents. These adsorbents are versatile in their chemical behavior which can be used to efficient adsorb the toxic chemicals and heavy metals.

The experiments which release hazardous fumes can be performed under Low-cost Fume Hood developed and constructed by the students under **AVISCAR** Programme.

Students ínvolved:

S.No.	Name of the Student	Roll Number	Group	Year
1	S.Shirisha	6058-19-578-029	B.Sc.(MCCs)	III
2	Mukthi Kanth Rout	6058-19-578-022	B.Sc.(MCCs)	III
3	N.Shiva Shankar	6058-19-578-025	B.Sc.(MCCs)	III
4	Y. Avinash Reddy	6058-19-578-038	B.Sc.(MCCs)	III
5	T.Chandana	6058-19-578-032	B.Sc.(MCCs)	III
6	K.Dheeraj Kumar	6058-19-578-017	B.Sc.(MCCs)	III

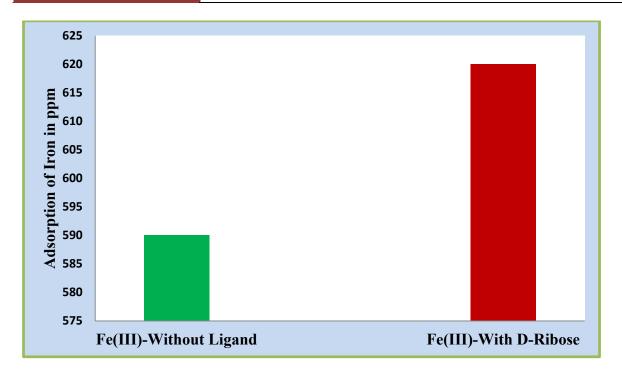
PROJECT TITLE: Quantitative Analysis of Absorption of APAP and ASA by *Oryza sativa L*.plants under variable pH conditions

Plants do absorb organic compounds efficiently compared to metal ions or other ionic compounds but if the organic compounds quite soluble in water and having active polar functional groups plants can absorbs organic molecules for some extent. Usually amino acids and sugars are absorbed by root cells of plants by contransport with H^+ . (Baker, 1978; Giaquinta, 1983) but the exact mechanism was still not revealed. PAOMs like drugs having reactive polar functional groups like -OH, -COOH, -NH₂ etc. are considerably absorbed by plant's root system. The functional groups of drugs bind with proteins of plasma membranes of root cells and initially get accumulated in roots, from there the accumulated drugs distributed to different parts of plants through phloem due to Osmotic and Pressure gradients. Absorption of APAP and ASA by Oryza sativa L. plants were greatly affected by pH conditions. The optimal pH for maximum absorption were observed at 6.5 for ASA and 5.5 for APAP by oryza sativa L. plants. The quantity of APAP absorbed by 11th leaf Orvza sativa L. plant incubated in medium having pH around 5.5 was enhanced by 24.687 % compared to plants incubated in neutral medium (pH = 7), whereas the increase was only 1.103 %, in the case of absorption of ASA by plants under similar conditions. But at the optimal pH point for ASA absorption i.e. at 6.5 the increase in absorption was 11.067 % compare to plants incubated in neutral conditions.

S.No.	Name of the Student	Roll Number	Group	Year
1	G.Shirisha	1601-6058-441-013	B.Sc.(MPC)	III
2	M.Prasanna	1601-6058-441-028	B.Sc.(MPC)	III
3	S. Susma	1601-6058-481-035	B.Sc.(BCCA)	III
4	Ayesha Nazneen	1601-6058-441-002	B.Sc.(MPC)	III

Students ínvolved:

Seríes of Projects focused on Heavy Metal Remediation using Adsorption Process


AVISCAR

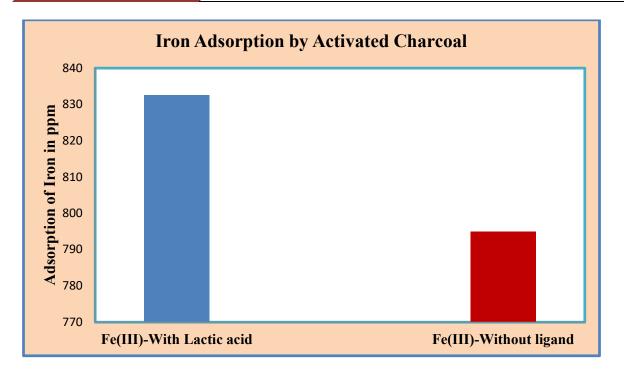
PROJECT TITLE: Adsorption Studies of Fe[III] on Celite in The Presence of D-Ribose as Chelating Agent

Adsorption of heavy metals is an important strategy to develop newer remediation technologies for the sustainable environmental protection. But the efficacy of adsorption of heavy metals under the normal conditions using suitable adsorbent depends on several factors which need to be finely tuned to get efficient adsorption process. In the presence of proper facilitating agents, the adsorption of heavy metals enhanced which will certainly improves the existing heavy metal techniques. The project evaluates the impact of D-Ribose as chelating agent in the adsorption of Fe (III) from aqueous solution by Celite as an adsorbent to develop efficient remediation technology using concept of Coordination chemistry.

Celite adsorbs **620** ppm of Iron metal from aqueous solution of Fe(III)-D-Ribose metal ligand solution. Whereas, Celite adsorbs only **590** ppm when D-Ribose is absent. It is evident from the AAS results, ligand involvement enhanced the metal adsorption by initiating potential chemical interactions between adsorbate and adsorbent. D-Ribose firmly interacts with Fe(III) to form a stable complex in aqueous condition. The complex coordination sphere in the resulted complex facilitates strong interactions with the polar points of the adsorbent, Celite. From the AAS results, it is conclusive that **5.08** % of adsorbtion increased in the presence of D-Ribose as chelating agent.

AVISCAR Augmented Visionary for Integrated Student Centric Activities in Research

Impact of D-Ribose on Adsorption of Fe (III) ions from aqueous solution by Celite


Students ínvolved:

S.No.	Name of the Student	Roll Number	Group	Year
1	S.SHIRISHA	605819578029	B.Sc (MCCs)	III
2	A.LAVANYA	605819578002	B.Sc (MCCs)	III
3	T.PRASANNA LAXMI	605819578031	B.Sc (MCCs)	III
4	S.ALEKHYA	605819578028	B.Sc (MCCs)	III
5	K.MANASA	605819578015	B.Sc (MCCs)	III
6	B.SRAVANI	605819578006	B.Sc (MCCs)	III

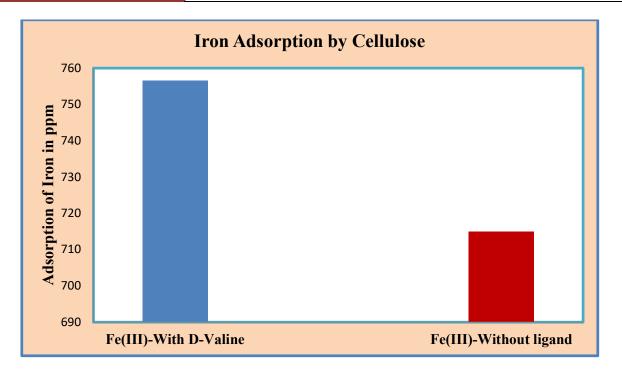
PROJECT TITLE: Adsorption Studies of Fe[III] on Activated Charcoal in the presence of Lactic Acid as Chelating Agent

Adsorption of heavy metals is a key development approach for more advanced remediation technologies for the preservation of the environment. However, the effectiveness of heavy metal adsorption under typical conditions using a good adsorbent depends on a number of variables that must be precisely adjusted to get an effective adsorption process. The adsorption of heavy metals was boosted in the presence of suitable facilitating agents, which undoubtedly improved the heavy metal procedures already in use. The project evaluates the impact of Lactic acid as chelating agent in the adsorption of Fe (III) from aqueous solution by activated charcoal as an adsorbent to develop efficient remediation technology using Metal-ligand interactions.

Activated charcoal adsorbed **832.5** ppm of Iron metal from aqueous solution of Fe(III)-Lactic acid metal ligand solution. Whereas, Activated charcoal adsorbed only **795.0** ppm when Lactic acid is absent. It is evident from the AAS results, ligand involvement enhanced the metal adsorption by initiating potential chemical interactions between adsorbate and adsorbent. Lactic acid strongly form coordination bonding with Fe(III) to form a soluble complex in aqueous solution. The ligand capped Fe(III) complex strongly adsorbed to Activated charcoal by establishing chemical bonding. From the AAS results, it is conclusive that **4.71** % of adsorption increased in the presence of Lactic acid as chelating agent.

AVISCAR

Impact of Lactic acid on Adsorption of Fe (III) ions from aqueous solution by Activated Charcoal


Students ínvolved:

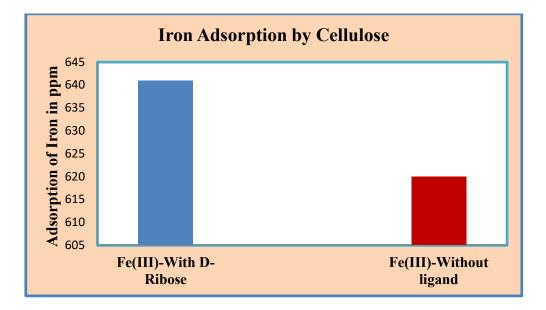
S.No.	Name of the Student	Roll Number	Group	Year
1	MukthiKanth Rout	6058-19-578-022	B.sc - MCCS	III
2	S. Raja Ramesh	6058-19-578-030	B.sc - MCCS	III
3	P. Sujil Kumar	6058-19-578-027	B.sc - MCCS	III
4	Ch. Srinivas	6058-19-578-008	B.sc - MCCS	III
5	B. Mahesh Kumar	6058-19-578-004	B.sc - MCCS	III
6	B. NikhileshBabu	6058-19-578-005	B.sc - MCCS	III

PROJECT TITLE: A dsorption of Fe[III] on Cellulose using D-Valine as Facilitating Agent

Cellulose can be used for adsorption of heavy metals owing to its polyhydric functional groups which will be a fetching tool to develop eco-friendly remediation strategy. Mean while, there is a need to improve the adsorption efficacy of cellulose by the incorporation of facilitating agents to design and develop standardized heavy metal remediation technology. For this purpose organic ligands will be useful to bring the metaladsorbent linkages by stabilizing the metal complexes which will bind to the adsorbent more covalently. The project evaluates the impact of D-Valine as facilitating agent in the adsorption of Fe (III) from aqueous solution by Cellulose as an adsorbent to develop efficient remediation technology using concept of Coordination chemistry. From an aqueous solution of the metal ligand solution Fe(III)-D-Valine, Cellulose absorbed 756.5ppm of iron. When D-Valine is absent, Cellulose only absorbed 715.0ppm. The AAS data clearly show that the addition of ligands improved the metal adsorption by triggering possible chemical interactions between the adsorbent and adsorbate. Strong coordination bonds between D-Valine and Fe(III) result in the formation of a soluble complex in aqueous solution. By creating chemical bonds, the ligand-capped Fe(III) complex firmly adhered to Cellulose. The AAS data clearly show that 5.804% more adsorption occurred when D-Valine was included as a chelating agent.

AVISCAR

Impact of D-Valine on Adsorption of Fe (III) ions from aqueous solution by Cellulose.


Students ínvolved:

S.No.	Name of the Student	Roll Number	Group	Year
1	K.Dheeraj Kumar	605819578017	BSc MCCs	III
2	G.Laxmi kanth	605819578012	BSc MCCs	III
3	K.Narasimha	605819578016	BSc MCCs	III
4	G.Omkar	605819578014	BSc MCCs	III
5	D.Anil	605819578009	BSc MCCs	III
6	A.Jeremiah	605819578001	BSc MCCs	III

PROJECT TITLE: Analysis of Adsorption of Fe[III] on Cellulose using D-Ribose as a Chelating Agent

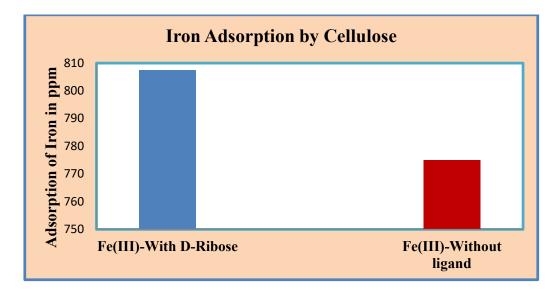
Due to its polyhydric functional groups, cellulose may be utilised to adsorb heavy metals, making it a valuable tool for developing environmentally acceptable remediation methods. The adsorption efficiency of cellulose must be increased in the interim by the addition of facilitating agents in order to design and create standardised heavy metal remediation technology. By stabilising the metal complexes that will more strongly bind to the adsorbent, organic ligands will be helpful for this aim in bringing the metal-adsorbent connections. The project evaluates the impact of D-Ribose as chelating agent in the adsorption of Fe (III) from aqueous solution by Cellulose as an adsorbent to develop efficient remediation technology using concept of Coordination chemistry. Cellulose adsorbs 641 ppm of Iron metal from aqueous solution of Fe(III)-D-Ribose metal ligand solution. Whereas, Cellulose adsorbs only 620 ppm when D-Ribose is absent. It is evident from the AAS results, ligand involvement enhanced the metal adsorption by initiating potential chemical interactions between adsorbate and adsorbent. D-Ribose firmly interacts with Fe(III) to form a stable complex in aqueous condition. The complex coordination sphere in the resulted complex facilitates strong interactions with the polar hydroxyl functional groups of the adsorbent, Cellulose. From the AAS results, it is conclusive that 3.387 % of adsorbtion increased in the presence of D-Ribose as chelating agent.

AVISCAR

Impact of D-Ribose on Adsorption of Fe (III) ions from aqueous solution by Cellulose.

Students ínvolved:

S.No.	Name of the Student	Roll Number	Group	Year
1	N.Shiva shankar	6058-19-578-025	B.Sc (MCCS)	III
2	K.Rahul	6058-19-578-019	B.Sc (MCCS)	III
3	L.Sai ram goud	6058-19-578-020	B.Sc (MCCS)	III
4	M.Arjun	6058-19-578-021	B.Sc (MCCS)	III
5	M.Madhav	6058-19-578-024	B.Sc (MCCS)	III
6	M.Binesh	6058-19-578-023	B.Sc (MCCS)	III


PROJECT TITLE: Adsorption Studies of Fe[III] on Bentonite in the presence of D-Ribose as Chelating Agent

AVISCAR

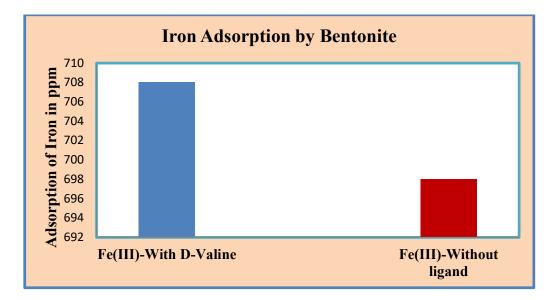
Adsorption of heavy metals is an important strategy to develop newer remediation technologies for the sustainable environmental protection. But the efficacy of adsorption of heavy metals under the normal conditions using suitable adsorbent depends on several factors which need to be finely tuned to get efficient adsorption process. In the presence of proper facilitating agents, the adsorption of heavy metals enhanced which will certainly improves the existing heavy metal techniques. The project evaluates the impact of D-Ribose as a chelating agent in the adsorption of Fe (III) from aqueous solution by Bentonite as an adsorbent to develop efficient remediation technology using concept of Coordination chemistry.

Bentonite adsorbs **807.5ppm** of Iron metal from aqueous solution of Fe(III)-D-Ribose metal ligand solution. Whereas, Bentonite adsorbs only **775.0ppm** when D-Ribose is absent. It is evident from the AAS results, ligand involvement enhanced the metal adsorption by initiating potential chemical interactions between adsorbate and adsorbent. D-Ribose firmly coordinates with Fe(III) to form a stable complex in aqueous condition. The complex coordination sphere in the resulted complex facilitates strong interactions with the polar points of Bentonite. From the AAS results, it is conclusive that **4.193%** of adsorbtion increased in the presence of D-Ribose as chelating agent.

AVISCAR

Impact of D-Ribose on Adsorption of Fe (III) ions from aqueous solution by Bentonite.

Students ínvolved:


S.No.	Name of the Student	Roll Number	Group	Year
1	T.Chandana	6058-19-578-032	B.Sc(MCCs)	III
2	T.Pranay Kumar	6058-19-578-033	B.Sc(MCCs)	III
3	T.Shiva Charan	6058-19-578-034	B.Sc(MCCs)	III
4	N.Sai Mahesh	6058-19-578-026	B.Sc(MCCs)	III
5	T.Raghavendra	6058-19-578-035	.Sc(MCCs)	III

PROJECT TITLE: Adsorption Studies of Fe[III] on Bentonite in the presence of D-Valine as Chelating Agent

Adsorption of heavy metals is an important strategy to develop newer remediation technologies for the sustainable environmental protection. But the efficacy of adsorption of heavy metals under the normal conditions using suitable adsorbent depends on several factors which need to be finely tuned to get efficient adsorption process. In the presence of proper facilitating agents, the adsorption of heavy metals enhanced which will certainly improves the existing heavy metal techniques. The project evaluates the impact of D-Valine as a chelating agent in the adsorption of Fe (III) from aqueous solution by Bentonite as an adsorbent to develop efficient remediation technology using concept of Coordination chemistry.

Bentonite adsorbs **708.0ppm** of Iron metal from aqueous solution of Fe(III)-D-Valine metal ligand solution. Whereas, Bentonite adsorbs only **698.0ppm** when D-Valine is absent. It is evident from the AAS results, ligand involvement enhanced the metal adsorption by initiating potential chemical interactions between adsorbate and adsorbent. D-Valine firmly coordinates with Fe(III) to form a stable complex in aqueous condition. The complex coordination sphere in the resulted complex facilitates strong interactions with the polar points of Bentonite. From the AAS results, it is conclusive that **1.432%** of adsorbtion increased in the presence of D-Valine as chelating agent.

AVISCAR

Impact of D-Valine on Adsorption of Fe (III) ions from aqueous solution by Bentonite.

Students ínvolved:

S.No.	Name of the Student	Roll Number	Group	Year
1	V. Prashanth	6058-19-578-036	B.Sc.(MCCs)	III
2	V. Aravind	6058-19-578-037	B.Sc.(MCCs)	III
3	Y. Avinash Reddy	6058-19-578-038	B.Sc.(MCCs)	III
4	Y. Shashi Pranay	6058-19-578-039	B.Sc.(MCCs)	III
5	D. Sai Kiran	6058-19-578-010	B.Sc.(MCCs)	III
6	K.Prashanth Reddy	6058-19-578-018	B.Sc.(MCCs)	III

List of On-Going Projects:

- 1. Development of Strategy for Remediation of Cr (VI) using Organic acid infused adsorbents.
- 2. Adsorption studies of Cr (III) from aqueous samples using Natural carboxylic acids assisted adsorbents.
- 3. Innovative approach for designing and developing eco-friendly bricks from Demolition waste using Clay Chemistry.
- 4. Impact of Natural carboxylic acid infusion on adsorbents for effective adsorption procedure for Mn (VII) ions.
- 5. Absorption studies of Fe+2 on carboxylic acid infused adsorbents.
- 6. Study of absorption capacity of Fe+3 on natural carboxylic acid permeated adsorbents.
- 7. Absorption studies of metal ions on active carbons prepared from pyrolysis of Almond shell.
- 8. MD study on Diffusion coefficient of water with varying Temperature.
- 9. MD Study on Diffusion coefficient of Methanol with varying Temperature.

Program Coordinator: Dr.Abhijit Kantankar

Centre for Advanced Teaching And Learning Yields by Students of Tara

Department of Chemistry has started an innovative program called CATALYST (Centre for Advanced Teaching And Learning Yields by Students of Tara) under which group of Teacherstudents design and prepares students friendly learning modules. This program also provides the content for curricular and co-curricular activities to create enthusiasm in the chemistry subject. Students with different intellectual levels were segregated and make them two groups. The group of students with fast learning capabilities and academically strengthened records will act as a peerteacher group which provides the support to the other group in which students are academically backward. The peer teacher group clarified the fundamental doubts of the slow learners and prepares them for upcoming classes and assessments. The catalyst program also prepared teaching modules like ICT enabled PPTs and Charts and models. Further Peer-Learning has been expanded with collaboration with IIT-Hyderabad under PMRF scheme. CATALYST also provide suggestions for the preparation of standard teaching plans like online content links of various open source teaching platforms for effective learning tools for out-side class room support to the low achievers. CATALYST also identifies the CFD (Concept, Formulae & Definitions) of the various topics for effective learning methodology. In the pandemic situation catalyst plays a significant role in peer learning by using online platforms like zoom for allied curricular transfer.

Some of the innovative activities under CATALYST Programme are detailed below;

Title of the activity:

RANGOLI COMPETITION FOR CREATING INTEREST IN CHEMISTRY

Context:

Rangoli is an art form, originating in the Indian subcontinent, in which patterns are created on the floor or the ground using materials such as colored rice, dry flour, colored sand or flower petals. It is usually made during Diwali or Tihar, Onam, Pongal and other Hindu festivals in the Indian subcontinent. Designs are passed from one generation to the next, keeping both the art form and the tradition alive.

The purpose of rangoli is decoration, and it is thought to bring good luck. Design depictions may also vary as they reflect traditions, folklore, and practices that are unique to each area. It is

2 Department of Chemistry, Tara Government College, Sangareddy (A)

CATALYST

Centre for Advanced Teaching And Learning Yields by Students of Tara

traditionally done by girls or women. Generally, this practice is showcased during occasions such as festivals, auspicious observances, marriage celebrations and other similar milestones and gatherings. Rangoli designs can be simple geometric shapes, deity impressions, or flower and petal shapes (appropriate for the given celebrations), but they can also be very elaborate designs crafted by numerous people. The base material is usually dry or wet powdered rice or dry flour, to which sindoor (vermilion), haldi (turmeric) and other natural colours can be added. Chemical colors are a modern variation. Other materials include colored sand, red brick powder and even flowers and petals, as in the case of flower rangolis.

In this context, Department of chemistry have conducted "Rangoli competition" to create interest in chemistry by using this art form as a media of expressing views of students.

Objective of the Program:

To create interest in chemistry through rangoli as medium of innovative expression.

Date: 7th February 2019.

Nature of the Activity: Rangoli Pattern Designing using Colors.

Coordinator of the Activity: K.Abhijit, Head of the Department.

Number of Students participated: 24

COMPETITION PROFILE DESCRIPTION

Rangoli-1:

Participants:

G.Sirisha, B.Sc.(MPC-III) S. Sushma, B.Sc.(BCCA-III) T. Anitha, B.Sc.(MPC-III) P. Shashank, B.Sc.(BCCA-III)

Description:

Shirisha and team expressed ion exchange chromatography through their rangoli, in which they have explained metal ions separation indicated by their original colors in rangoli. They have also drawn naphthalene and camphor chemical structure with Naphthalene and camphor balls. The rangoli was beautifully decorated with lights and flowers which attracts most of the viewers and brought their attention in chemistry which reflected in their art form.

Rangoli-2:

Participants:

M. Saikiran, B.Sc.(BZC-III), K. Vikram, B.Sc.(BZC-III), B. Pavan, B.Sc.(BZC-III), S. Mohan Raj, B.Sc.(BZC-III), T. Sushma, B.Sc.(BZC-III), T. Sujatha, B.Sc.(BZC-III), M. Mounika, B.Sc.(BZC-III), P. Maheshwari, B.Sc.(BZC-III)

Description:

Saikiran and team viewed their ideas through rangoli using aromatic rings and lab glass ware like columns, beakers and round bottom flasks which indicated chemistry, along with structures of Chlorophyll and hemoglobin. This represents their group i.e. BZC as Chlorophyll indicates Botany (B), Hemoglobin indicates Zoology (Z) and Glass ware indicates Chemistry(Z). Their creativity was appreciated by viewers.

6 Department of Chemistry, Tara Government College, Sangareddy (A)

CATALYST

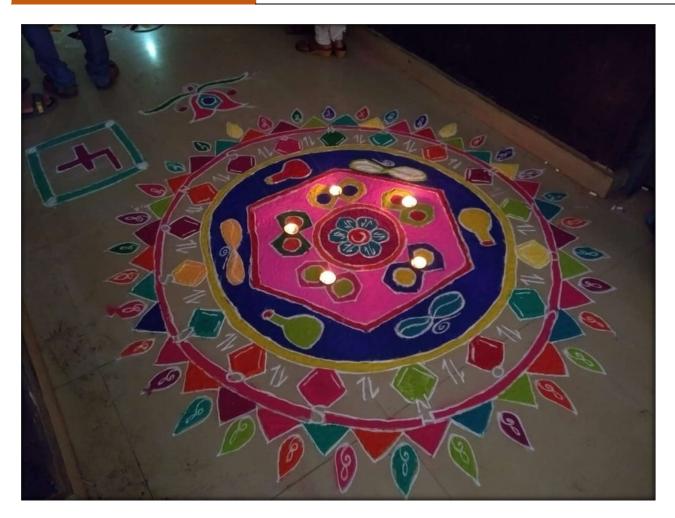
Rangoli-3:

Participants:	V. Shobha, B.Sc.(MPC-III),
	G. Mounika, B.Sc.(MZC-III).

Description:

Shobha and team viewed their ideas through rangoli using aromatic phenol rings embedded in Lotus flowers. Their rangoli art form was inspired by pairing of electrons and orbital lobes. The rangoli was beautifully decorated with colors and symmetrical proportions of chemical structures.

Rangoli-4:


Participants:

M. Prasanna, B.Sc.(MPC-III), R. Manjula, B.Sc.(MPC-III),

Description:

Prasanna and team viewed their ideas through rangoli using aromatic naphthalene rings embedded in Hexagonal benzene ring. Their rangoli art form was inspired by spinning of electrons and orbital lobes. The rangoli also consists glass ware and different heterocycles. The rangoli was beautifully decorated with colors and lights which attracts viewer's attention.

Rangoli-5:

Participants:	D.Mounika, B.Sc.(MZC-III),
	S. Srilatha, B.Sc.(MZC-III),

Description:

Mounika and team viewed their ideas through rangoli using neuro transmitter Dopamine structures and lab glass ware like conical flasks and glass rods along with overlapping of orbitals to form sigma(σ) and pi(π) bonds with symmetrical pattern mixed with ribose sugar molecules. The overall combination of structures and colors made rangoli beautiful and receives viewers

appreciation.

CATALYST

Rangoli-6:

Participants:

M. Sushmaswaraj, B.Sc.(MZC-III), K.Priyanka, B.Sc.(MZC-III),

Description:

Sushmaswaraj and team viewed their ideas through rangoli using physical chemistry concepts like electrolysis using voltaic cells and the clock embedded at the centre has a dial in which numbers expressed by elements which has same atomic number to which they are represents. The color combinations and outlines of the patterns were perfectly balanced.

Rangoli-6:

Participants: Juweria Amena, B.Sc.(MPC-III), Ayesha Nazneen, B.Sc.(MPC-III), Tehreen Begum, B.Sc.(MPCs-III), Ayesha Afreen, B.Sc.(MPCs-III),

Description:

Juweria and team expressed their views in rangoli using concepts of chromatography. The rangoli has paper chromatography setup which is surrounded by hexagonal aromatic rings in a consecutive manner decorated with different colors. The color combinations and outlines are perfectly designed.

CATALYST

PRESS COVERAGE

విద్యార్థుల వినూత్న ప్రయోగం

కొండాపూర్(సంగారెడ్డి): రసాయన శాస్త్రంపై ఆసక్తిని పెంపొందించేందుకు సంగారెడ్డిలోని తారా ప్రభుత్వ కళాశాల విద్యార్థులు గురు వారం రసాయన శ్రాస్తానికి సంబంధించిన సమీకరణలు, నిర్మాణాలతో ముగ్గల ద్వారా వినూత్న ప్రయోగం చేశారు. ఈ సందర్భంగా విద్యార్థలు మాట్లాడుతూ ఇలాంటి వినూత్న ప్రయోగాలు చేయడం వల్ల విద్యార్థులకు సృజనాత్మకతతో పాటు శాస్త్ర విజ్ఞానంపై అవగా హన పెరుగుతుందని తెలిపారు. ఇందులో భాగంగా దావణంలోని వివిధ అయాన్లను, విభజనను అయాన్ వినిమయ క్రొమటోగ్రఫీ ద్వారా వేరు చేయడాన్ని ప్రత్యేకంగా ఆయా అయాన్ల రంగులను ఉపయోగించి ప్రయోగం చేశారు. క్రోమియం(ఆకుపచ్చ), ఫెర్రిక్(ప ఉపయోగించి ముగ్గులు వేశారు. ఈ కార్యక్ర సుపు), కోబాల్స్ (ఆరెంజ్), మాంగనీస్(పింక్) మంలో తారా కళాశాల విద్యార్థులు శిరీష, వంటి అయాన్లు సహజసిద్దంగా పరికల్పన సుష్మ, శశాంక్, అనిత తదితరులు పాల్గొన్నారు

ముగ్గల రూపంలో రసాయన సమీకరణలు వేస్తున్న తారా కళాశాల విద్యార్థులు

చేస్తూ ముగ్గల రూపంలో ప్రదర్శించారు. అదే విధంగా నాఫ్తలిన్ బాల్స్, కర్పూరం గుళికలను

Title of the activity:

MY FAVORITE ELEMENT

Elocution competition

Context:

The United Nations General Assembly during its 74th Plenary Meeting proclaimed 2019 as the International Year of the Periodic Table of Chemical Elements (IYPT 2019) on 20 December 2017. Based on the 202 EX/Decision 43, the IYPT2019 was adopted by the UNESCO General Conference at its 39th Session (39 C/decision 60).

1869 is considered as the year of discovery of the Periodic System by the Russian scientist, Dmitri Mendeleev. The IYPT 2019 also commemorates the 150th anniversary of the establishment of the Periodic Table of Chemical Elements. The International Year aims to recognize the importance of the Periodic Table of Chemical Elements as one of the most important and influential achievements in modern science reflecting the essence not only of chemistry, but also of physics, biology and other basic sciences disciplines.

The IYPT 2019 is an opportunity to reflect upon many aspects of the periodic table, including its history, the role of women in research, global trends and perspectives on science for sustainable development, and the social and economic impacts of this field.

In this connection, the Department of Chemistry has conducted elocution competition on "MY FAVORITE ELEMENT". In this activity students have expressed their views about their favorite element and defend them with the knowledge of chemical concepts related to the particular Chemical element of the periodic table.

Objective of the Program:

To create awareness on multifaceted applications of chemical elements in day to day life.

Date: 17th February 2019.

Nature of the Activity: Elocution.

Coordinator of the Activity: K.Abhijit, Head of the Department.

Number of Students participated: 14

Winner: 1. First Prize: G. Shirisha B.Sc.MPC-III-EM

2. Second Prize: P. Sashank, B.Sc.BCCA-III-EM

CATALYST

Centre for Advanced Teaching And Learning Yields by Students of Tara

CATALYST

PRESS COVERAGE

యునెస్కో పలిపర్తన పట్టికకు 150 వసంతాలు

సంగారెడ్డి చౌరస్తా: యునెస్కో పరివర్తన పట్టికను రూపొందించి 150 సంవత్సరాలు పూర్తయిన సందర్భంగా యునెస్కో ఈ ఏడాదిని అంతర్జా తీయ ఆవర్తనా పట్టిక సంవత్సరంగా ప్రకటించిందని తారా డిగీ కళాశాల రసాయన శాస్త్ర విభాగధిపతి డాక్టర్ అభిజిత్ తెలిపారు. ఈ మేరకు యునె స్కో సంవత్సరాన్ని పురస్కరించుకొని బుధవారం కళాశాలలో 'నా ఇష్ట మైన మూలకం' అనే అంశంపై రసాయన మూలకాల ప్రాముఖ్యత, అను వర్తనాల గురించి విద్యార్థులకు అవగాహన కల్పించారు. ఈ కార్యక్రమం లో కళాశాల [పిన్సిపాల్ డాక్టర్ చంద్రముఖర్జీ, కళాశాల అధ్యాపకులు కె శ్రీధర్, రవికుమార్, మనోజ్కుమార్, శ్రావణి, శివదీప్తి, రాంబాబు, రాధా, విద్యార్థులు పాల్గొన్నారు.

Title of the Activity:

CHEMICAL ELEMENT'S MANUAL

through

DIGITAL ASSIGNMENTS ON ELEMENTS OF PERIODIC TABLE

On the Occasion of

2019 - International Year of the Periodic Table of

Chemical Elements

CC-By-Flickr-COMICLING54

Under

Centre for Advanced Teaching And Learning Yields by Students of Tara

ABOUT THE ACTIVITY

The United Nations General Assembly during its 74th Plenary Meeting proclaimed 2019 as the International Year of the Periodic Table of Chemical Elements (IYPT 2019) on 20 December 2017. Based on the 202 EX/Decision 43, the IYPT2019 was adopted by the UNESCO General Conference at its 39th Session (39 C/decision 60).

1869 is considered as the year of discovery of the Periodic System by the Russian scientist, Dmitri Mendeleev. The IYPT 2019 also commemorates the 150th anniversary of the establishment of the Periodic Table of Chemical Elements. The International Year aims to recognize the importance of the Periodic Table of Chemical Elements as one of the most important and influential achievements in modern science reflecting the essence not only of chemistry, but also of physics, biology and other basic sciences disciplines.

The IYPT 2019 is an opportunity to reflect upon many aspects of the periodic table, including its history, the role of women in research, global trends and perspectives on science for sustainable development, and the social and economic impacts of this field.

In this connection, the Department of Chemistry has conducted Digital Assignments on Elements of Periodic Table under CATALYST program. Students have developed content of different elements which includes their Discovery, Properties and Applications. This content used as study manual for students as a Learning Module.

Name of the Activity:

Peer-Teaching to the Slow Learners in the Pandemic Situation

In the pandemic situation students with good communication and presentation skills with good academic excellence were selected and trained for conducting "ONLINE TEACHING and DOUBT CLARIFICATION" sessions using with SMALL PEER GROUPS using user friendly Zoom platform under the CATALYST program. This activity exclusively designed for identified slow learners, as they feel inferior to ask doubts on basic concepts but they feel comfortable in the small peer groups with good friendly atmosphere. This activity helped us to achieve good results in the final examinations.

The details of Online Peer Learning Sessions conducted by the Students under CATALYST program are as follows:

S.No.	Name of the	Roll No.	Group/Class	Topic Covered	No. of
	Student who				Students
	conducted the				participated
	Online Session				
1			BSc-BCCA-	Concepts of	9
	Adiki Pranaya	605817481001		Medicinal	
			III	Chemistry	
2	Jarupla	605817457025	BSc-MZC-III	Enzyme	12
	Manjulatha	003817437023	DSC-WZC-III	Inhibition	
3	Jonnada Swetha	605817457026	BSc-MZC-III	ADMET	10
4	Ankam Bhanu			Molecular	10
		605817445001	BSc-BZC-III	Binding points	
	Prakash			in Drug	
5	Madgul Sneha	605817445018	BSc-BZC-III	Drug Synthesis	12
	Reddy	003817443018	DSC-DZC-III		
6	Maloth Swathi	605817445020	BSc-BZC-III	Drug Synthesis	12
7	Police Pooja	605817445028	BSc-BZC-III	Harmones	10
8	Muthkani Pooja	605817445022	BSc-BZC-III	Vitamines	9
9	9 Shameem	605817445035	BSc-BZC-III	Neuro-	12
				transmitters	
10	Chavan Nanditha	605817481005	BSc-BCCA-	Molecular	10
	Chavan Ivanultha	00381/481005	III	Messengers	

Name of the Activity:

Active Learning through ICT Content Development by Students

The main objective of the CATALYST program is "the active participation of students in curricular design and development". In order to fulfill this aspect, students prepared PPTs learning friendly PPTs on critical topics of Chemistry by taking the help of effective feedback especially from slow learners. These PPTs were utilized in curricular enrichment by the faculty. Program Coordinator of CATALYST provided additional inputs in the development of the ICT through power point presentations. This activity provided strong and efficient peer learning platform. It also inculcates "Critical Thinking Abilities" among the Students.

The following are the Power Point Presentations prepared by the students under CATALYST program:

S.No.	Name of the Student	Roll Number	Group	Academic	Topic on which
				Year	PPT prepared
1	Maloth Sai Kiran	605816445019	BSc-BZC-	2018-19	Carbonyl
	Kumar		III		Compounds
2		605816445034	BSc-BZC-	2018-19	Hydroxy
	Thammali Sushma		III		Compounds &
					Ethers
3		605816445035	BSc-BZC-	2018-19	Chemistry of d-
	Toorpu Sujatha		III		block elements
4			BSc-MPC-	2018-19	p-Block Elements-
	Ayesha Nazneen	605816441002	III		Ι

27 Department of Chemistry, Tara Government College, Sangareddy (A)

Centre for Advanced Teaching And Learning Yields by Students of Tara

5			BSc-MPC-	2018-19	Chemistry of Zero
	Gajjela Shirisha	605816441013	III		Group
6			BSc-MPC-	2018-19	Theory
	Jamalpur Vaishnavi	605816441018	III		Quantitative
					Analysis
7			BSc-MPC-	2018-19	Carbanions
	Juveria Amena	605816441019	III		
8			BSc-MPC-	2018-19	Chemical Bonding
	Lakhavath Srilatha	605816441026	III		
9			BSc-MPC-	2018-19	Chemistry of f-
	Machagoni Prasanna	605816441028	III		Block Elements
10			BSc-	2018-19	Chromatography
	A Ashwini	605816481001	BCCA-III		
11		605816481011	BSc-	2018-19	Evaluation of
	KarraSwarnalatha		BCCA-III		Analytical Data
12		605816481025	BSc-	2018-19	Properties of Halo
	Patlolla Sushma Reddy		BCCA-III		Compounds
13		605816481020	BSc-	2018-19	p-Block Elements-
	Neeradi Vinod Kumar		BCCA-III		II
14			BSc-	2018-19	Quantitative
	Swantham Sushma	605816481035	BCCA-III		Analysis
15	Kummari Priyanka	605816457029			Isomerism
16			BSc-MZC-	2018-19	Metal Carbonyls
	Molugu Sushmaswaraj	605816457036	III		
17		605816457042	BSc-MZC-	2018-19	Nitrogen
	PoshettyChandrakanth		III		Compounds
18			BSc-MZC-	2018-19	Organometallic
	Sangola Anusha	605816457049	III		Compounds

28 Department of Chemistry, Tara Government College, Sangareddy (A)

		BSc-	2018-19	Mass Spectra
Joshi Naveenkumar	605816578016	MCCs-III		
		BSc-	2019-20	Chromatography-
Chavan Nanditha	605817481005	BCCA-III		II
		BSc-	2019-20	Electrochemistry
Adiki Pranaya	605817481001	BCCA-III		
		BSc-	2019-20	Chromatographic
Sved Saddam Ali	605817481023	BCCA-III		Techniques
, J		BSc-	2019-20	Reactions of
L Neeraja	605817481015	BCCA-III		Carboxylic acids
¥		BSc-BZC-	2019-20	Solid State
Prakash	605817445001	III		
		BSc-BZC-	2019-20	Solutions
Madgul Sneha Reddy	605817445018	III		
		BSc-BZC-	2019-20	Alkyl Halides
Maloth Swathi	605817445020	III		
		BSc-BZC-	2019-20	Alkenes
Muthkani Pooja	605817445022	III		
		BSc-BZC-	2019-20	Inorganic
Nikhath Naaz	605817445023	III		Reaction
				Mechanism
		BSc-BZC-	2019-20	Coordination
Police Pooja	605817445028	III		Compounds
		BSc-BZC-	2019-20	Nitrohydrocarbons
Ramavath Radhika	605817445031	III		
		BSc-BZC-	2019-20	Chemistry of
		III		Organometallic
Sathyagama Shravani	605817445034			Compounds
	Chavan Nanditha Adiki Pranaya Syed Saddam Ali L Neeraja Ankam Bhanu Prakash Madgul Sneha Reddy Maloth Swathi Muthkani Pooja	Chavan Nanditha 605817481005 Adiki Pranaya 605817481001 Syed Saddam Ali 605817481023 L Neeraja 605817481015 Ankam Bhanu Prakash 605817445001 Madgul Sneha Reddy 605817445020 Muthkani Pooja 605817445022 Nikhath Naaz 605817445023 Police Pooja 605817445023 Ramavath Radhika 605817445031	Joshi Naveenkumar605816578016MCCs-IIIJoshi NaveenkumarBSc-BSC-Chavan Nanditha605817481005BCCA-IIIAdiki Pranaya605817481001BSC-Adiki Pranaya605817481001BSC-Syed Saddam Ali605817481003BSC-Syed Saddam Ali605817481001BSC-Maceraja605817481001BSC-BZC-IIIBSC-BZC-IIIMadgul Sneha Reddy605817445001BSC-BZC-Maloth Swathi605817445020BSC-BZC-IIIBSC-BZC-IIIMuthkani Pooja605817445022BSC-BZC-Nikhath Naaz605817445023BSC-BZC-IIIIIIIIIBSC-BZC-IIIIIIIIIBSC-BZC-IIIIIIBSC-BZC-IIISikhath Naaz605817445023BSC-BZC-IIIIIIIIIBSC-BZC-IIIIIIIIIIIIIIIBSC-BZC-IIIIIIIIIIIIIIIBSC-BZC-II	Joshi Naveenkumar605816578016 MCCs-IIIMCCs-IIIA A Chavan NandithaA 605817481001BSc- BCCA-III2019-20 BCA-IIIAdiki Pranaya605817481001BSc- BCCA-III2019-20Adiki Pranaya605817481002BCCA-III2019-20Syed Saddam Ali605817481003BCCA-III2019-20L Neeraja605817481015BSc- BCCA-III2019-20Madgul Sneha Reddy Prakash605817445001BSc-BZC- III2019-20Maloth Swathi605817445002BSc-BZC- III2019-20Muthkani Pooja605817445023BSc-BZC- III2019-20Nikhath Naaz605817445023BSc-BZC- III2019-20Nikhath Naaz605817445023BSc-BZC- III2019-20Nikhath Radhika605817445023BSc-BZC- III2019-20III

32			BSc-BZC-	2019-20	Applications of
	Shameem	605817445035	III		Organometallic
	Snameem	005817445055			Compounds
33			BSc-MZC-	2019-20	Phenols
55	Boga Mounika	605817457012	III	2019 20	T nenois
34			BSc-MZC-	2019-20	Properties of
54			III	2019-20	Carbonyl
	Boini Ravali	605817457013	111		-
25				2010.20	Compounds
35	Bollu Lavanya	605817457014	BSc-MZC-	2019-20	Carboxylic Acids
	Dona Daranya		III		
36			BSc-MZC-	2019-20	Introduction to
	Buranwadi Sampurna	605817457015	III		Chromatographic
					Techniques
37			BSc-MZC-	2019-20	Properties of
	Jarupla Manjulatha	605817457025	III		Phenols
38			BSc-MZC-	2019-20	Valance Bond
	Jonnada Swetha	605817457026	III		Theory
39			BSc-MZC-	2019-20	HSAB Principle
	Megavath Sunitha	605817457036	III		and Applications
40			BSc-MZC-	2019-20	Solvent Extraction
	Vuttukuru Srilatha	605817457049	III		
41			BSc-BtBC-	2020-21	Heterocyclic
	Macherla Bhavana	605818572009	III		Compounds
42			BSc-BtBC-	2020-21	Optical Isomerism
	K Meena	605818572007	III		
43			BSc-BtBC-	2020-21	Chemistry of
			III		Dilute Solutions
	Kyasaram Meena Kumari	605818572008			
	i suman i				

44			BSc-BtBC-	2020-21	Amino Acids
44	Begari Krishnaveni	605818572003		2020-21	Amino Acids
	8		III		
45	Muthkani Nandini	605818572014	BSc-BtBC-	2020-21	Amino acids and
		003818372014	III		Proteins
46			BSc-BtBC-	2020-21	Electrophilic
			III		Aromatic
	Police Sai Kiran	605818572015			Substitution
					Reactions
47			BSc-BtBC-	2020-21	Concepts of
	Shreya Reddy	605818572017	III		Chemical Kinetics
48			BSc-BtZC-	2020-21	Factors affecting
	Avusali Shivajyothi	605818489001	III		Rate of the
					Reactions
49			BSc-BtZC-	2020-21	Concept of Order
	Bansuwada Sowmya	605818489003	III		and Molecularity
50			BSc-BtZC-	2020-21	Zero Order
	Gattumeedi Durgesh	605818489005	III		Kinetics
51			BSc-BtZC-	2020-21	First Order
	Naziya Fathima	605818489010	III		Kinetics
52			BSc-BtZC-	2020-21	Second Order
	Sumera Jabeen	605818489015	III		Kinetics
53			BSc-MBC-	2020-21	Methods
	Gonguluri Swarna Latha	605818458005	III		Determining
					Reaction Order
54			BSc-MBC-	2020-21	Nuclear Magnetic
			III		Resonance
	Patnam Mamatha	605818458011			Spectroscopy-
					Concepts
	L		l	1	

55			DC. MDC	2020.21	
55			BSc-MBC-	2020-21	Nuclear Magnetic
	Talla Nikhila		III		Resonance
		(05010450014			Spectroscopy-
	Talla Nikhila	605818458014			Equivalent and
					Non Equivalent
					Protons
56			BSc-MBC-	2020-21	Nuclear Magnetic
			III		Resonance
	Vadla Manasa	605818458017			Spectroscopy-
					Chemical Shifts
57			BSc-MBC-	2020-21	Nuclear Magnetic
			III		Resonance
	Kurva Swetha	605818458007			Spectroscopy-
					Spin-Spin
					Coupling
58			BSc-	2020-21	IR-Spectroscopy
	Alugulla Mamatha	605818578001	MCCs-III		
59			BSc-	2020-21	Structural Theory
	Bhamini Anupama	605818578004	MCCs-III		of Organic
					Chemistry
60			BSc-	2020-21	Diels-Alder
	Chindam Madhavi	605818578007	MCCs-III		Reactions
61			BSc-	2020-21	First law of
	Godugu Swapna	605818578013	MCCs-III		Thermodynamics-
	6 1				Ι
62			BSc-	2020-21	Ag-Pb Phase
	Kummari Ruchitha	605818578022	MCCs-III		Diagram
63			BSc-	2020-21	Black Body
	Naika Narayana	605818578032	MCCs-III		Radiation

64			BSc-	2020-21	Concept of Heat
	T Sandeep Reddy	605818578041	MCCs-III		Capacity
65			BSc-	2020-21	Critical
	Yelamala Manisha	605818578043	MCCs-III		Phenomenon
66	Golla Sheshikanth	605819572005	BSc-BtBC-	2021-22	De Broglie
			III		hypothesis
67	Kallem Sai Prasanna	605819572006	BSc-BtBC-	2021-22	Derivation of
			III		Relationship
					between Vander
					Waals Constants
68	Maldoddi Nikitha	605819572008	BSc-BtBC-	2021-22	Expression for
			III		work of
					Expansion
69	Rathod Meenakshi	605819572012	BSc-BtBC-	2021-22	First law of
			III		Thermodynamics-
					II
70	Sanadhi Laxman	605819572013	BSc-BtBC-	2021-22	Gibb's Phase Rule
			III		and its
					Components
71	U Navaneetha	605819572014	BSc-BtBC-	2021-22	Hiesenberg
			III		Uncertainty
					Principle
72	Aluri Lavanya	605819578002	BSc-	2021-22	Isothermal and
			MCCS-III		Adiabatic Prcesses
73	Bisa Sravani	605819578006	BSc-	2021-22	Law of
			MCCS-III		Corresponding
					states and Joule
					Thompson Effect
		1			

		I	1	1	1 1
74	Chembeti Srinivas	605819578008	BSc-	2021-22	Liquification of
			MCCS-III		Gaseous
75	Shankarampet	605819578028	BSc-	2021-22	NaCl-water
	Alekhya		MCCS-III		System
76	Singitham Shirisha	605819578029	BSc-	2021-22	Photo-Electric
			MCCS-III		effect
77	Talelma	605819578031	BSc-	2021-22	Quantum
	Prasannalaxmi		MCCS-III		Numbers
78	Thammali Chandana	605819578032	BSc-	2021-22	Relation Between
			MCCS-III		Cp,Cv-Concept
					of Enthalpy
79	Thammalithota	605819578033	BSc-	2021-22	Thermodynamic
	Pranay Kumar		MCCS-III		Quantities
80	Tudumu Shiva Charan	605819578034	BSc-	2021-22	Vander Waals
			MCCS-III		equation
81	Yellayolla Avinash	605819578038	BSc-	2021-22	Various Forms of
	Reddy		MCCS-III		First Law of
					Thermodynamics
82	Amrin	605819457001	BSc-MZC-	2021-22	Water Phase
			III		Diagram
83	Nelapati Vijaya	605819457016	BSc-MZC-	2021-22	Work Done in
			III		adiabetic Process
84	Patnam Prashanth	605819457018	BSc-MZC-	2021-22	Zn-Mg System
	Kumar		III		

Name of the Activity:

Student Contribution to Curricular Integrity and Understanding through open access e-Resources

Under the **CATALYST** Programme student's active participation in curricular framework and design is encouraged. The academic perception with viewpoint of students was analyzed by the students by via multilevel peer discussions for the complex topics of chemistry. The students search the e-Resources for these topics and selected exemplary e-Resources with affirmative feedback from their peer. These e-Resources were considered for the designing "**TEACHING PLANS**" for the efficient curricular transfer. **CATALYST** Programme provides a peculiar delegation to the students in the Curricular development strategies which inculcate "**Critical thinking and Problem solving abilities**" among the students.

The following are the open access e-Resources suggested by the students under **CATALYST** Programme and incorporated in teaching plans of the Department of Chemistry;

S.No.	Name of	Roll No.	Group/	Academic	Topic of e-	Link of the e-
	the Student		Class	Year	Resources	Resources
1			BSc-MPC-	2018-19		
	Ayesha Nazneen	605816441002	III		Isomerism	<u>https://youtu.be/</u> <u>YUEkOBvJSNg</u>
2			BSc-MPC-	2018-19		https://www.yout
	Gaini Panchasheela	605816441012	III		P- Block elements -II	ube.com/watch?v =1B32YDiR-cY
3			BSc-MPC-	2018-19	Atomic	
	Jamalpur Vaishnavi	605816441018	III		structure and elementary quantum	<u>https://youtu.be/</u> <u>vuGpUFjLaYE</u>
					mechanics	
4			BSc-MPC-	2018-19		1
	Kummari Shivaleela	605816441025	III		Chemical Kinetics	<u>https://youtu.be/</u> <u>e4qci9b2d3U</u>

5			BSc-MPC-	2018-19	Dilute	
5	Machagoni		DSC-MPC-	2018-19	Solutions &	<u>https://www.yout</u>
	Prasanna	605816441028	III		Colligative	ube.com/watch?v
					Properties	<u>=nCWSWbffQ8k</u>
6			BSc-MPC-	2018-19		https://www.yout
	Thalari	605816441042			Theory of	ube.com/watch?v
	Anitha		III		Quantitative Analysis	=ynAx9gln7ZM
7			BSc-MPC-	2018-19		
	Vadthya	605816441044			Amines,	<u>https://youtu.be/</u>
	Shobha	000010111011	III		Cyanides and Isocyanides	DbvCRSgiuew
8			BSc-BCCA-	2018-19	Introduction	
0			Dot Deell	2010 19	and	1 // . 1 /
	A Ashwini	605816481001	III		Terminology of	<u>https://youtu.be/</u> v6sFdawERRU
					Medicinal	VOSPUAWERRO
			BSc-BCCA-	2018-19	chemistry	
9	Karra		DOU-DUUA-	2010-19	Inorganic	https://youtu.be/
	Swarnalatha	605816481011	III		Qualitative	QQo1e-BUZWs
					Analysis	
10	Swantham		BSc-BCCA-	2018-19		https://youtu.be/
	Swantnam Sushma	605816481035	III		P- Block	4H4kTtdL55k
	~				elements 1	
11	Poshetty		BSc-MZC-	2018-19	Undrown	https://www.yout
	Chandrakant	605816457042	III		Hydroxy compounds	ube.com/watch?v
	h		111		and ethers	<u>=03rfdQYjFVA</u>
12	Patlolla		BSc-BCCA-	2018-19		
	Shashank	605816481024			Carboxylic acids and	https://youtu.be/
	Kumar		III		derivatives	<u>gSEYrWwREkI</u>
13	Manne		BSc-BCCA-	2018-19		
	Swarna	605816164810			T1	https://youtu.be/
	Latha	17	III		Thermodynami cs	<u>Qi3m9sD5w-A</u>
14			BSc-MPC-	2018-19		
	Gajjela	605816441013				<u>https://youtu.be/</u>
	Shirisha		III		Synthetic Stratogies	Brw4_mNQEiw
16			BSc-BCCA-	2019-20	Strategies Aromatic	
10			221 20011		hydrocarbons	<u>https://youtu.be/</u>
	Adiki		III			BDooDi7zQxo
17	Pranaya	605817481001	BSc-BCCA-	2019-20		
17			DSC-DUUA-	2019-20		https://www.youtub
	Chavan		III		Chemical	e.com/watch?v=x2-
	Nanditha	605817481005	Da Dati	0.10.20	Bonding	<u>nP7i6T34</u>
18			BSc-BCCA-	2019-20		https://youtu.be/Kn
	Saraf		III			<u>u9F3H0B9I</u>
	Sahithya	605817481022			Gaseous State	

19			BSc-BCCA-	2019-20		
	Syed Saddam Ali	605817481023	III		Liquid State and Solutions	https://youtu.be/ <u>55dHnYaupgQ</u>
20	Vadla		BSc-BCCA- III	2019-20	Solid state	https://youtu.be/ pUJtSPICn0w
21	Aishwarya Ankam Bhanu Prakash	605817481024 605817445001	BSc-BZC-III	2019-20	chemistry Structural Theory in Organic	https://youtu.be/ HwK8P9CHTx0
22	Kanchi Nissi	605817445017	BSc-BZC-III	2019-20	Chemistry Chemistry of d- block elements	https://www.yout ube.com/watch?v =lSi849GO5CA
23	Madgul Sneha Reddy	605817445018	BSc-BZC-III	2019-20	Electrochemist ry	https://www.yout ube.com/watch?v =gYEbvyRR2Og
24	Maloth Swathi	605817445020	BSc-BZC-III	2019-20	Carbanions-I	<u>https://youtu.be/</u> <u>2mGhkk4qZoA</u>
25	Muthkani Pooja	605817445022	BSc-BZC-III	2019-20	Chemistry of f- block elements	https://youtu.be/ hTEiGJS9W2A
26	Nikhath Naaz	605817445023	BSc-BZC-III	2019-20	Metal carbonyls and Organometalli c Chemistry	https://youtu.be/ <u>3FRV31YYtL8</u>
27	Police Pooja	605817445028	BSc-BZC-III	2019-20	Amino acids and proteins	<u>https://youtu.be/-</u> <u>C7o6waCIj0</u>
28	Ramavath Radhika	605817445031	BSc-BZC-III	2019-20	Bioinorganic Chemistry	https://youtu.be/ v7Yn9ngYF9Q
29	Sathyagama Shravani	605817445034	BSc-BZC-III	2019-20	Separation techniques - II	https://www.yout ube.com/watch?v =Ia8yrBL2Xwc
30	Shameem	605817445035	BSc-BZC-III	2019-20	Molecular Messengers, Vitamins and Micronutrients	<u>https://youtu.be/</u> <u>cFslt2ps634</u>
31	Jarupla Manjulatha	605817457025	BSc-MZC- III	2019-20	Electro analytical methods	https://www.yout ube.com/watch?v =KmynBWxyRxw
32	Jonnada Swetha	605817457026	BSc-MZC- III	2019-20	Non - aqueous solvents	https://www.yout ube.com/watch?v =djfYNs0-yQg
33	Goudigama Sai Ganesh	605817457023	BSc-MZC- III	2019-20	Symmetry of molecules	https://www.yout ube.com/watch?v =Nb4j_FishI0

34	Macherla	605818572009			Acyclic	https://youtu.be/
	Bhavana				hydrocarbons	<u>AQmZrC7Mgs8</u>
35	Muthkani Nandini	605818572014	BSc-BtBC- III	2020-21	Carbonyl compounds	https://www.yout ube.com/watch?v =SkCrBqbPrWM
36	Police Sai Kiran	605818572015	BSc-BtBC- III	2020-21	Nitrohydrocarb ons	https://youtu.be/ FZ4ZuKrKzHs
37	Shreya Reddy	605818572017	BSc-BtBC- III	2020-21	Separation techniques - I	https://www.yout ube.com/watch?v =mz_xcNrTK_U
38	Bansuwada Sowmya	605818489003	BSc-BtZC- III	2020-21	Asymmetric synthesis	https://www.yout ube.com/watch?v =pPe9iTLLdNI
39	Naziya Fathima	605818489010	BSc-BtZC- III	2020-21	Stereoisomeris m	https://www.yout ube.com/watch?v =4Zz6opXLeXc
40	Patel Shivani	605818489012	BSc-BtZC- III	2020-21	Phase Rule	https://youtu.be/ Nxk2WOFXh88
41	Peddapuram Akhil Teja	605818489013	BSc-BtZC- III	2020-21	Coordination Compounds -II	https://youtu.be/ 0vN4Qh666Cw
42	Rahul Rathod	605818489014	BSc-BtZC- III	2020-21	Heterocyclic Compounds	https://youtu.be/ bl1bh9laxks
43	Sumera Jabeen	605818489015	BSc-BtZC- III	2020-21	Theories of bonding in metals	<u>https://youtu.be/</u> <u>X1VdgZ1N0_Q</u>
44	Gonguluri Swarna Latha	605818458005	BSc-MBC- III	2020-21	Molecular spectroscopy	https://www.yout ube.com/watch?v =PYj7UNayfsg
45	Gumasta Sai Bhargavi	605818458006	BSc-MBC- III	2020-21	NMR and Mass Spectrometry	https://www.yout ube.com/watch?v =EYbLXAhTJQ0
46	Kurva Swetha	605818458007	BSc-MBC- III	2020-21	Enzymes and Receptors	<u>https://youtu.be/</u> <u>SqjVB8WT1xo</u>
47	Alugulla Mamatha	605818578001	BSc-MCCs-	2020-21	Synthesis and Therapeutic Activity of	https://youtu.be/I llgkYAWz0w

			III		Drugs	
48	Babugonda	605818578002	BSc-MCCs-	2020-21	Inorganic reaction	https://www.yout ube.com/watch?v
	Rammohan		III		mechanisms	=3mwmsGm54I4
49	Bhamini Anupama	605818578004	BSc-MCCs- III	2020-21	Pericyclic Reactions	https://youtu.be/ <u>9VpCOr3WNYI</u>
50			BSc-MCCs-	2020-21		https://www.yout
	Golla Nithish Kumar	605818578015	III		Polymers	ube.com/watch?v =T4bpT_b0Zc8
51	Bisa Sravani	605819578006	BSc-MCCs-	2021-22		https://www.topp
			III		Chemistry of Zero group elements	<u>r.com/ask/questio</u> <u>n/draw-the-</u> <u>structures-of-the-</u> following-xef4/
52	Chembeti Srinivas	605819578008	BSc-MCCs- III	2021-22		https://www.kha nacademy.org/scie nce/organic- chemistry/substitu tion-elimination- reactions/sn1-sn2-
					Halogen compounds	tutorial/v/sn1-vs- sn2-summary
53	Kammari Manasa	605819578015	BSc-MCCs- III	2021-22	Coordination	https://youtu.be/ PpuPUMfr91Y
54	Shankarampe t Alekhya	605819578028	BSc-MCCs- III	2021-22	compounds - I Evaluation of analytical data	https://study.com /learn/lesson/acc uracy-precision-in- chemistry- difference.html
55	Singitham Shirisha	605819578029	BSc-MCCs- III	2021-22		https://www.yout ube.com/watch?v =ABNL-5ZS3fE
56	Talelma	605819578031	BSc-MCCs-	2021-22	Carbanions-II	
50	Prasannalax mi		III		Carbohydrates	https://youtu.be/ Z7sUuoAlRrE
57	Thammali Chandana	605819578032	BSc-MCCs- III	2021-22	Photochemistr v	https://youtu.be/ _cu7jq0Dbww
58	Thammalitho ta Pranay Kumar	605819578033	BSc-MCCs- III	2021-22	Boranes and Carboranes	https://www.yout ube.com/watch?v =S5j4iyyCy7U

