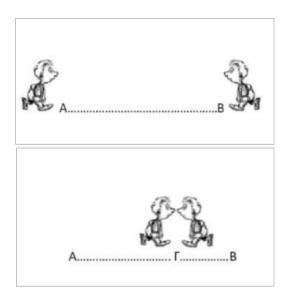


Department of Mathematics

STUDY PROJECT – 2021 – 22

On



"Story on Location of Roots Theorem"

Government Degree College - Shadnagar

Ranga Reddy (Dist)

Student Study Project

on

"Story on Location of Roots Theorem"

SI.No	Roll No	Name of the Student	Group
1	20033067441001	B.M.F.Gagan	M.P.C
2	20033067441002	D. Mounika	M.P.C
3	20033067441004	K. Nandini	M.P.C
4	20033067441005	P. Akhila	M.P.C
5	20033067468001	A. Sravani	M.P.Cs
6	20033067468004	P. Samuel	M.P.Cs

These Supervisor

T. Sri Krishna

Department of Mathematics

GDC - Shadnagar

rincipaloulege SHADNAG GDC⁻⁻Shadnagar

Government Degeer College Shadnagar

Ranga Reddy (Dist)

Certificate

This is to certify that BSc (MPC & MPCs) SEM III students has successfully completed a Study Project on **"Story on Location of Roots Theorem"** for the academic year 2021 - 22 under the Supervision of **T. Sri Krishna, Department of Mathematics.**

Hence it is certified

GO¥ Halt. GDC hadnagar

Project
Story on location of roots theorem :-
If f is continuous on
$$[a,b]$$
 and $f(a), f(b)$ have
opposite eigns then there exists $c \in (a,b)$ such that
 $f(c) = 0$
proof: $f:[a,b] \longrightarrow R$ is continuous function.
case 1: let $f(a) \ge 0$ and $f(b) \ge 0$
 $s = \frac{1}{2} \times \frac{1}{2} [a,b]/f(x) \ge 0$
we know that $f(a) \ge 0 \Rightarrow a \ge s$
 \therefore s is nen-emptyset
we know that $f(b) \ge 0 \Rightarrow b \ge s$
 \therefore b is upper bound of s
s is a non-empty set and bound above
let sup of $s = c$
we know that $f(s) = 0$
 $f(s$

let x E (b-S, b] =) 2125 =) b-<u>5</u> sup s= c :. b = c : c E (a, b) let to prove that f (c) = 0 let f (c) 20. by n bd property 3 570 such that f(x)20 where x 2 (c-s, c+5) for some x 2 [c, c+5] x>cand we have f(x) LO let f(c) >0, by nod property 3 570 such that f(x)>0 where re(c-S, c+S) we know that sup s=c FSES such that d & (-S, c) : f(d) 20 $\neq f(c) \neq 0$ o°o f (c) = o where ce (arb) case 2: f(a) >0 and f(b) 20 $le+ f(x) = -f(x) + x \varepsilon (a,b)$ f(a) > 0 =) - f(a) < 0 =) f(a) < 0f(b) LO =) - f(b) >0 =) F(b) >0 when F (a) 20 and F(b) >0 by case 1 $\exists c \in (a,b)$ such that F(c) = 0-F(c) = 0 =) f(c) = 0:. If f(a) 70 and f(b) 20 Then J c E (arb) such that f(c) = 0.

Dialectic creation and resolving of the problem of the existence of root - application of Bolzano theorem in the analysis (the fixed point theorem in topology). $A \longrightarrow B$

professor : George who lives in the village A. started on foot to go to the village B of his grandmother. He started at 7am and arrived at 11 am. He slept at his grandmother's and the other day started from the village B at 7 am and arrived in the village A at 11 am. The way he walked both days was ran -dom. Sometimes slowly, sometimes stable, some times quickly and some times stoppetd to drink water or to admire a beautiful flower. -student: And then:

- professor: The story of George ends here. what would you answer if I told you that there is a point of the route on which george was at the same time both days; - Student: Thinks... Strange I How is that

possible ?

-professor: Imagine now that while George begins from village A to village B of his grandmother, his twin brother starts from the village B in the village of A.

Note that both walk on their own way, and that both cover the path at exactly the same time.

A _____ E- student: I understand, some time they meet at an intermediate random point C and their clocks showp the same time... between J and II A ______B

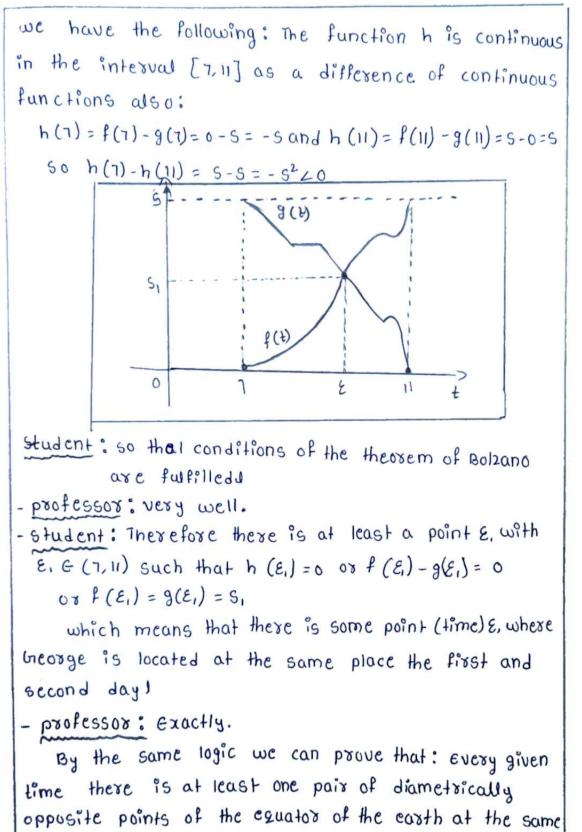
-professor: Good jab I you just solved a problem that is resolved by applying the theorem of Bolzano. Let us now recall the theorem of Bolzano:

If one function f is continuous in the interval [a,b] and $f(a) - f(b) \ge 0$, then there is at least one point $\{\xi(a, b) \text{ such that } f(\xi) = 0$

- student: I fail to associate it.

-professor: Let us suppose that the distance between the two villages is s and the functions f(t) and g(t)with $t \in (7, 11)$ which express the distance that George has traveled the first and the second day respective -ly at time t.

Then we get f(7) = 0, g(7) = 5, f(11) = 5, and g(11) = 0. so assuming the function h with h(t) = f(t) - g(t)



temperature !!