# **GOVERNMENT DEGREE COLLEGE**



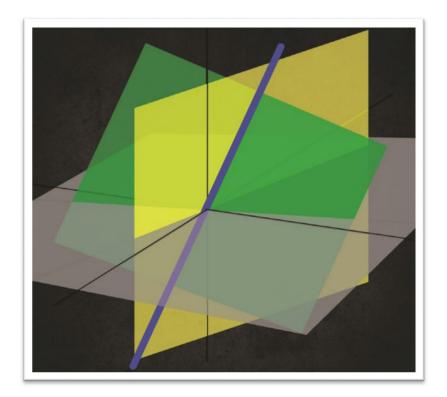


Ranga Reddy – Dist

Department of Mathematics

STUDY PROJECT – 2021 – 22

On



## "Difference between Col A and Nul A"

## **Government Degree College - Shadnagar**

Ranga Reddy (Dist)

#### **Student Study Project**

#### on

## "Difference between Col A and Nul A"

| SI.No | Roll No           | Name of the Student | Group  |
|-------|-------------------|---------------------|--------|
| 01    | 1903 3067 468 002 | P.Archana           | M.P.Cs |
| 02    | 1903 3067 468 001 | T.Aparna            | M.P.Cs |
| 03    | 1903 3067 441 005 | V.Shailaja          | M.P.C  |
| 04    | 1903 3067 441 002 | M.Srikanth          | M.P.C  |
| 05    | 1903 3067 441 003 | S.Ramadevi          | M.P.C  |

These Supervisor

T. Sri Krishna

**Department of Mathematics** 

**GDC - Shadnagar** 

ULLEGE rincipal SHADHA GDC Shadnagar

### Government Degeer College Shadnagar

Ranga Reddy (Dist)

## Certificate

This is to certify that BSc (MPC & MPCs) SEM V students has successfully completed a Study Project on **"Difference between Col A and Nul A"** for the academic year 2021 - 22 under the Supervision of **T. Sri Krishna, Department of Mathematics.** 

Hence it is certified

Principal ULLEGE SHADNAGAR GDC=Shadnagar

# Vull Space :-

Null Space: the null space of an mxn matrix A, is denoted by Null A, is the set of all Solutions of the homogeneous equation AX = D.

NULA = Ex: x is in R° and Ax=03

The NULLA is a Set of all x in  $\mathbb{R}^n$  that are mapped into the zero vector of  $\mathbb{R}^n$ with the linear transformation  $T(x_i) = A X$ .

Caluctation of Nul A Matorice :-

The Null Space of an mxn matrix. A is a Subspace of R<sup>n</sup>.

Proof of Null A =  $\{x: x \text{ is in } \mathbb{R}^n \text{ and } Ax = 0\}$ TO prove that Null A is Subspace of  $\mathbb{R}^n$ . We know that A0 = 0, therefore OE NULLA.

These force Null A is non-compty subset of 
$$P^n$$
.  
Let  $u, V \in Null A \rightarrow Au = 0, AV = 0$   
TO prove that  $u + v$ ,  $cu \in Null A$ .  
Let  $A(u + v) = Au + Bv = 0 + 0 = 0$   
These force  $u + v \in Null A$   
Let  $A(cu) = c(Au) = c0 = 0$   
These force  $cu \in Null A$ .  
These force  $Lu \in Null A$ .  
These force  $Null A$  is Subspace of  $P^n$ .  
Find a Spanning Set for the null space of  
the matrix,  $u = \binom{-3 \ 6 \ -1 \ 1 \ -7}{1 \ 2 \ 2 \ 3 \ -1}$   
Seli-  
The given matrix  
 $A = \begin{bmatrix} -3 \ 6 \ -1 \ 1 \ -7}{1 \ 2 \ 3 \ -1}$   
 $2 \ -4 \ 5 \ 8 \ -4 \ 0 \end{bmatrix}$ 

$$R_{1} \text{ interschanging } R_{2}$$

$$= \begin{pmatrix} 1 & -2 & 2 & 3 & -1 & 0 \\ -3 & 6 & -1 & 1 & -7 & 0 \\ 2 & -4 & 5 & 8 & -4 & 0 \end{pmatrix}$$

$$R_{2} \rightarrow R_{2} + 3R_{1} ; R_{3} \rightarrow R_{3} - 2R_{1}$$

$$= \begin{bmatrix} 1 & -2 & 2 & 3 & -1 & 0 \\ -3+3 & 6-6 & -1+6 & 1+9 & -7-3 & 0+0 \\ 2-2 & -4+4 & 5-4 & 8-6 & -4+2 & 0-0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -2 & 2 & 3 & -1 & 0 \\ 0 & 0 & 5 & 10 & -10 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \end{bmatrix}$$

$$R_{2} \rightarrow R_{2}(1/5)$$

$$[A \ 0] = \begin{bmatrix} 1 & -2 & 2 & 3 & -1 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \end{bmatrix}$$

$$Q_{2} = Q_{2}(-2R_{2}) \cdot R_{2} \rightarrow R_{2}-R_{2}$$

$$= \begin{bmatrix} 1 & -2 & 0 & + & 3 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

x1-2x2-x4+3x5=0 ; x3+2x4-2x5=0

 $x_1 = 2x_2 + x_4 - 3x_5$ ;  $x_3 = -2x_4 + 2x_5$ 

$$\chi = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \\ \chi_5 \end{bmatrix} = \begin{bmatrix} 2\chi_2 + \chi_4 - 3\chi_5 \\ \chi_2 \\ -\chi_2 \\ -\chi_4 + 2\chi_5 \\ \chi_4 \\ \chi_5 \end{bmatrix}$$

$$X = \chi_{2} \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \chi_{4} \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + \chi_{5} \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, V = \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \end{bmatrix}, W = \begin{bmatrix} 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

x =Span of  $\xi u : v : w g$ 

... Nul A = Span of {u.v.w}.

column Space :-The Column Space of an maxim matoix A, is the set of all tinear combinations of the column of A. IF A= {a1,a21--- an 3 Col A = 2pan { a1, a2, a3, ..... an y we know that Span Eanazi--ang is subspace of Rm. Therefore column space of an mrn matrix A is subspace of Rm. COLA is denoted by COLA = 20:0 = Ax for Some x in RDZ. col A is the range of the linear -loanstoomation T(X)=AX. Let  $A = \begin{bmatrix} 10 & -8 & -2 & -2 \\ 0 & 2 & 2 & -2 \\ 1 & -1 & 6 & 0 \\ 1 & 1 & 0 & -2 \end{bmatrix}$  and  $w = \begin{bmatrix} 9 \\ 2 \\ 0 \\ 2 \\ -1 \end{bmatrix}$ 

Determine wis in column A. IS wis

in NULA.  $\begin{bmatrix} A & w \end{bmatrix} = \begin{bmatrix} 10 & -8 & -2 & -2 & 2 \\ 0 & 2 & 2 & -2 & 2 \\ 1 & -1 & 6 & 0 & 0 \\ 1 & 1 & 0 & 2 & 2 \end{bmatrix}$ R, interchanging R3  $= \begin{bmatrix} 1 & -1 & 6 & 0 & 0 \\ 0 & 2 & 2 & -2 & 2 \\ 10 & -8 & -2 & -2 & 2 \\ 1 & 1 & 0 & 2 & 2 \end{bmatrix}$ R2 -> R2(1/2); R3->R3-10R1 Ry-)RU-RI 1-1 1+1 0-6 2+0 2-0

$$\begin{bmatrix} \mathbf{P} & \mathbf{\omega} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 6 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 \\ 0 & 2 & -62 & -2 & 2 \\ 0 & 2 & -6 & 2 & 2 \end{bmatrix}$$

$$\mathbf{R}_{1} \rightarrow \mathbf{R}_{1} + \mathbf{R}_{2} \quad ; \quad \mathbf{R}_{3} \rightarrow \mathbf{R}_{3} - 2\mathbf{R}_{2} \quad ; \quad \mathbf{R}_{4} \rightarrow \mathbf{R}_{4} - 2\mathbf{R}_{2}$$

$$\begin{bmatrix} \mathbf{H}_{0} & -1 + 1 & 6 + 2 & 0 - 1 & 0 + 1 \\ 0 & 1 & 1 & -1 & 1 \\ 0 & 1 & 1 & -1 & 1 \\ 0 - 0 & -62 - 2 & -62 - 2 + 2 & 2 - 2 \\ 0 - 0 & 2 - 2 & -6 - 2 & 2 + 2 & 2 - 2 \\ 0 - 0 & 2 - 2 & -6 - 2 & 2 + 2 & 2 - 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \mathbf{D} & \mathbf{T} & -1 & 1 \\ 0 & 1 & 1 & -1 & 1 \\ 0 & 0 & -64 & 0 & 0 \\ 0 & 0 & -8 & 4 & 0 \end{bmatrix}$$

$$\mathbf{R}_{3} \rightarrow \mathbf{R}_{3} \begin{bmatrix} -1/6\mathbf{u} \end{bmatrix} ; \quad \mathbf{R}_{4} \rightarrow \mathbf{R}_{4} \begin{bmatrix} 1/4 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \mathbf{T} & -1 & 1 \\ 0 & 1 & 1 & -1 & 1 \\ 0 & 1 & 1 & -1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 1 & 0 \end{bmatrix}$$

$$R_{1} \rightarrow R_{1} - R_{3} ; R_{2} \rightarrow R_{3} - R_{3} ; R_{4} \rightarrow R_{4} + 2R_{3}$$

$$(f) \omega ] = \begin{bmatrix} 1 - 0 & 0 - 0 & 1 - 1 & -1 - 0 & 1 - 0 \\ 0 - 0 & 1 - 0 & 1 - 1 & -1 - 0 & 1 - 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 + 0 & 0 + 0 & -1 + 1 & 1 \\ 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$R_{1} \rightarrow R_{1} + R_{4} ; R_{2} \rightarrow R_{2} + R_{4}$$

$$[R_{1} \omega] = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

The equation core consistent we call

$$A \cdot w = \begin{bmatrix} 10 & -8 & -2 & -2 \\ 0 & 2 & 2 & -2 \\ 1 & -1 & 6 & 0 \\ 1 & 1 & 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 2 \\ 0 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} 20 - 16 - 0 - 44 \\ 0 + 4 + 0 - 44 \\ 1 - 2 + 0 + 40 \\ 2 + 2 + 0 + 44 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 8 \\ \end{bmatrix} + 0$$

AW & O .: W& NULA. .: The given equation is

WE COLA.

Colactorion of dim of COLA & NULA:-

Determine the dim of cold and Nulta for

The matrix 
$$A = \begin{bmatrix} 1 & 2 & -4 & 3 & -2 & 6 & 0 \\ 0 & 0 & 0 & 1 & 0 & -3 & 7 \\ 0 & 0 & 0 & 0 & 1 & 4 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

"- Given matoix

$$P = \begin{bmatrix} 1 & 2 & -4 & 3 & -2 & 6 & 0 \\ 0 & 0 & 0 & 1 & 0 & -3 & 7 \\ 0 & 0 & 0 & 0 & 1 & 4 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

-A matoix coder = UX7

column = 1, col = 4, col = 5, col = 7.

.: dim cot A = no. of pivot column = 4

3 columns are not pivot column.

- ... the homogeneous AX=0 contains 3-free Variables.
  - ... dimension.

dim col A = 3

.: dim Nul A = no of free variables

... dim NULA = 3.

prevance between cot A and Nul A :-

| NULA                                                                                        | ColA                                                                                                                    |  |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| t. Nul A is subspace of Rn.                                                                 | 1. COLA is a subspace<br>of Rm                                                                                          |  |
| 8. FOR finding vector v, it<br>is easy to tell if v is in<br>NULLA . JUST COMPUTE<br>AV.    | 2. Given a Specific vector<br>V. It my take time to<br>tell if V is in COLA.<br>ROW Operations on<br>IAVI are dequired. |  |
| 8. for finding vector in<br>NULA, row operations<br>on IA OI are required.                  | 3. Given a Specific is<br>easy to finding vector<br>in cola. The column<br>of A are displayed.                          |  |
| 4. Null $A = \{0\}, iff$ the equation $AX = 0$ has only the taivial colution.               |                                                                                                                         |  |
| 5. $NUI = 202$ iff the linear<br>toansformation $x \rightarrow AX$<br>the trivial Solution. | $to 5. Coll A = R^m$ iff the<br>linears transformation<br>$X \rightarrow AX$ maps $R^n$ onto<br>$R^m$ .                 |  |