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A Unified Total Synthesis of Isocyclocapitelline 
and Cyclocapitelline
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Abstract
A facile and concise synthesis of β-carboline alkaloids, such as (–)- isocyclocapitelline and (+)- cyclocapitelline, has been achieved 
from commercially available geraniol through a unified strategy. The key steps involved in this synthesis are Sharpless epoxidation, 
intramolecular ring opening of epoxide, Pictet- Spengler reaction, and dehydrogenative aromatization using 10% palladium/carbon 
in xylene under neutral conditions.
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Substituted tetrahydrofuran (THF) ring containing natural 
products possess a highly complex structure with a diverse 
range of  biological properties.1,2 The tetrahydrofuran ring is 
frequently found in natural products, as well as in many bio-
logically and pharmaceutically active compounds.3-9 In partic-
ular, 2,5- disubstituted THFs is a key structure for a variety of  
biologically active natural products.10,11 On the other hand, 
THFs are the synthons for the synthesis of  complex natural 
products such as pheromones, pharmaceutical agents, poly-
ether antibiotics, and marine toxins.12-14 These fascinating 
structural features and intrinsic biological activities attracted 
many scientists toward the total synthesis of  these natural 
products.15-25

β-Carboline alkaloids (Figure  1), such as 
(–)- isocyclocapitelline (8a) and (+)- cyclocapitelline (8b), 
were first isolated from the Rubiaceae family plant Hedyotis 
capitella (used as a folk medicine in China and Vietnam) by 
Gunter Adam et al in 1999.26 Voltz et al reported the first 
total synthesis of  these alkaloids (8a) and (8b) from α-hy-
droxyallenes through a gold- catalyzed cycloisomeriza-
tion.26,27 Subsequently, a modular approach has been 
reported for the synthesis of  (–)- isocyclocapitelline (8a) and 
(+)- cyclocapitelline (8b) from cis- arbusculone and trans- 
arbusculone, respectively.28 Herein, we have established a 
synthetic route which permits access to the synthesis of  
(–)- isocyclocapitelline (8a) and (+)- cyclocapitelline (8b) in a 
unified fashion, from commercially available terpene, gera-
niol, as a key precursor. The present synthesis is a highly 
concise and protection group free process to construct the 
β-carboline skeleton under mild conditions.

Results and Discussion
Our synthesis commenced with a familiar transformation in 
organic synthesis, which is Sharpless asymmetric epoxidation 
of  the readily available monoterpene geraniol (1). The vital 
strategy in our synthesis is the preparation of  chiral 2-((2R,5S)-
5-(2- hydroxypropan-2- yl)-2- methyltetra- hydrofuran-2- yl)acet-
aldehyde (5a), a key intermediate in our synthesis, which was 
prepared by a sequence of  transformations. Geraniol (1) was 
subjected to Sharpless epoxidation29–31 using (d-(–)- diisopropyl 
tartrate, Ti(OiPr)4, and tert- butyl hydroperoxide in dichloro-
methane (CH2Cl2) to afford the epoxy alcohol 2 in 95% yield. 
The reductive opening of  epoxide 2 was accomplished by 
using sodium bis(2- methoxyethoxy)aluminum hydride (3.5 M 
in toluene, 1.1 equiv.), to give the diol 3, with 90% yield. The 
diol 3 was further treated with meta- chloroperoxybenzoic acid 
in CH2Cl2, to afford the functionalized THF core as a mixture 
of  diastereomers 4a and 4b in a 1:1 ratio, which was separated 
by column chromatography and obtained as pure compounds. 
Treatment of  diol 3 with a chiral Shi32 ketone A (derived from 
fructose) in the presence of  oxone, potassium carbonate in 
acetonitrile and water over 8 hours gave the chiral THF core 4a 
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as a single isomer.22,26 Disappearance of  the signal (dd) at δ 
5.11 ppm and the presence of  signals at δ 131.5, 121.4 ppm in 
the 1H and 13C nuclear magnetic resonance (NMR) spectra 
confirmed the formation of  4a and 4b from 3. The spectro-
scopic data of  4a are in agreement with that of  the product 
formed with Shi ketone, which was further confirmed by its 
stereochemistry. Compound 4a was further oxidized to alde-
hyde 5 under a nitrogen atmosphere, using pyridinium chlo-
rochromate (PCC) as an oxidant in CH2Cl2 (60% yield) 
(Scheme 1). The characteristic triplet 1H signal at δ 9.85 ppm 
and 13C signal at δ 202.2 ppm confirmed the formation of  alde-
hyde 5.

Coupling of  Aldehyde 5a and 5b With Tryptamine (6)
Aldehyde 5a was treated with tryptamine (6) in the presence of  
TFA in CH2Cl2 under Pictet- Spengler33 conditions to give 

tetrahydrocarboline 7, which was further subjected to dehydro-
genation with palladium (Pd)/carbon (C) in xylene under reflux 
conditions to furnish (−)- isocyclocapitelline (7a) in 75% yield 
over 2 steps, as shown in Scheme 2. The 1H and 13C NMR 
spectra of  the synthesized product 8a were in full agreement 
with those of  the reported natural product.34 The specific rota-
tion of  our synthesized compound was  [α]25D   = −72 (c 0.5, 
CHCl3), which correlated with the natural product34  [α]25D   = 
−72 (c 0.5, CHCl3).

Similarly, synthesis of  (+)- cyclocapitelline (8b) was achieved 
from the aldehyde 5b by adopting the above reaction condi-
tions, as shown in Scheme 3.

The 1H and 13C NMR spectra of  the synthesized product 
8b correlated with those of  the reported natural product.34 
The specific rotation of  our synthesized compound was [α]D

25 
= +42.8 (c 0.5, CHCl3), which was in agreement with the natu-
ral product34 [α]D25 = +43 (c 0.5, CHCl3).

General experimental details and spectroscopic data have 
been included in Supplementary Material 1.

Figure 1. Representative examples of β-carboline alkaloids.

Scheme 1. Reagents and conditions: (a) (–)-diethyltryptamine, 
Ti(OiPr)4, tert- butyl hydroperoxide, 4 Å MS, CH2Cl2, –30 °C, 
95%; (b) dry tetrahydrofuran, sodium bis(2- methoxyethoxy)
aluminum hydride (3.5 M in toluene, 1.1 equiv.), 90%; (c) meta- 
chloroperoxybenzoic acid, dichloromethane (CH2Cl2), 0 to room 
temperature, 4 hours, 80% (4a and 4b in 1:1 ratio); (d) fructose- 
derived catalyst A (0.15 equiv.), oxone (1.8 equiv.), dimethyl ether, 
potassium carbonate (2 equiv.), acetonitrile:water (1:1), pH = 10.5, 8 
hours, 81%; (e) pyridinium chlorochromate (PCC), CH2Cl2, reflux, 
12 hours, 60%.

Scheme 2. Reagents and conditions: (f) tryptamine (6), 
trifluoroacetic acid, dichloromethane, 78 °C, 3 hours; (g) palladium/
carbon, xylene, reflux, 8 hours, 75%.

Scheme 3. Reagents and conditions: (h) tryptamine (6), 
trifluoroacetic acid, dichloromethane, 78 °C, 3 hours; (i) palladium/
carbon, xylene, reflux, 8 hours, 70% over 2 steps.
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Conclusion
In summary, we have successfully established a unified strategy for 
the total synthesis of  Hedyotis plant alkaloids (–)- isocyclocapitelline 
(8a) and (+)- cyclocapitelline (8b) from readily available geraniol (1). 
The vital reactions involved in this approach are the Sharpless 
asymmetric epoxidation, reductive cleavage of  epoxide, intramo-
lecular ring opening of  epoxide, and Pictet- Spengler reaction. The 
overall strategy is a very facile, scalable, and protection group- free 
synthesis, which makes it a concise synthesis.
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