DEPARTMENT OF BIOTECHNOLOGY

BEST PRACTICE

BEST PRACTICE

- 1. Title of the Practice 5 MCQs per week
- 2. Objectives
 - To enable the students to pay full attention in the class
 - To make the habit of noting down important points in the class.
 - To prepare them continuously for P.G entrance exams
 - To improve their cognitive skills
- 3. The context
 - With the revolution of computers and internet, students are loosing the habit of taking notes in the class
 - Usual pattern of Semester exams do not have MCQs, but all competitive exams are in MCQs form
 - Students need not have to prepare separately for P.G exams
 - Many students cannot afford to purchase practice books
 - Students need to be encouraged to take up carrier in applied life sciences
- 4. The Practice
 - Teacher gives 5 MCQs/fill in the blank questions per week.
 - Models question papers of various universities are also used.
 - Students can refer to their notes to answer the questions
 - The brief discussion that happen during question hour will give the feeling of summarizing the topic as well as repetition for slow learners
- 5. Evidence of success
 - Students feel confident to write various P.G entrance exams
 - Slow learners also tend to improve their learning abilities
 - Students have material for quick revision for their P.G entrance exams
- 6. Problems encountered and Resources required
 - If some students were absent for a class, they fail to attempt the questions
 - Model question papers of various P.G entrance exams, CSIR, UDC-NET exams etc.

Semes	e with course code : Molecular Biology BT5310 ster : V	Class : III B.SC BT.BC.C &BT.B.C Month & Week: JULY - I wk
	: Nucleotides are the Precursors for DNA Synthesis	
S.No	Questions	Answer with explanation
1.	The nitrogenous base is covalently linked to the which carbon of the pentose sugar. a) C1 b) C2 c) C3 d) C4	Answer: a Nucleotides are phosphate esters of a five carbon sugar, either ribose of 2'- deoxyribose. The nitrogenous base is covalently linked to the C1 carbon of this pentose sugar to form the nucleotide.
2	Which of the following is not a part of a nucleotide? a) Ester linkage b) Phosphate group c) Base d) Hydrogen bond	Answer: d Nucleotides are phosphate esters of a five carbon sugar, either ribose of 2'- deoxyribose. The nitrogenous base is covalently linked to the C1 carbon of this pentose sugar to form the nucleotide. Hydrogen bond is made by the bases to hold the two strands of DNA together and is not a part of the nucleotide.
3.	In which carbon do the deoxyribonucleotides lack an -	Answer: b
	OH molecule? a) C1 b) C2 c) C3 d) C4	A deoxyribonucleotides lack an –OH molecule at the C2 position of the ribose sugar ring. This is the substrate for DNA synthesis and is known as the 2'-deoxyribonucleotide
4.	Which of the following is not a nucleotide? a) AMP b) TMP c) GMP d) CMP	Answer: b TMP is not a nucleotide. Thymine is not present in form of Thymidine monophosphate as it is not used in RNAs. Thymine is present in the form of dTMP deoxythymidine monophosphate as it is used in the synthesis of DNA only.
5.	Which of the following is not a part of a nucleoside? a) Deoxyribose sugar b) Glycosidic linkage c) Phosphate d) Base	Answer: c A nucleoside is the deoxyribose sugar linked to the base with a glycosidic linkage. Addition of a phosphate at the 5'-carbone leads to the formation of the nucleotide

5 MCQs – per week

	Course With course code : Molecular Biology BT5310 Class : III B.SC BT.BC.C &BT.B.C				
	Semester : V Month & Week: JULY & III WK				
	DNA Replication	1			
S.No	Questions	Answer with explanation			
1.	Replication of chromosome occurs during which phase.	Answer: b Replication of chromosome occurs			
	a) G1	during the $S - phase of the cell cycle.$			
	b) S	During this time all the DNA is			
	c) G2	duplicated exactly once. Incomplete			
	d) Division	replication of any part causes			
		inappropriate links between daughter			
		chromosomes.			
2	How many origin of replication are present in the E.	Answer: a			
	coli genome	The E. coli genome has only one origin			
	a) 1	of replication, thus only one replicon.			
	b) 100	The eukaryotic genome has multiple			
	c) Uncountable	origin of replication sites, thus have a			
	d) None	multiple replicon system. The origin of			
		replication in E. coli genome is known			
		as the ori C.			
3.	The origin of replication is rich in	Answer: a			
	a) A, T	The origin of replication is an A, T rich			
	b) G, C	segment of DNA which unwinds readily			
	c) A, G	but not spontaneously. Unwinding of			
	d) C, T	DNA at this region is controlled by the			
		replication initiation proteins			
4.	The topological unlinking of DNA in prokaryotes is	Answer: b			
	promoted by	The final step in prokaryotic DNA			
	a) Helicase	replication is the topological unlinking			
	b) Topoisomerase c) Tus	of the parental DNA strands. This process is catalyzed by topoisomerase.			
	d) Dna C				
5.	Which enzyme is used to remove the primer from the	Answer: d			
	Okazaki fragment?	Primer used for prokaryotic replication			
	a) Endonuclease	of lagging strand is a DNA primer thus			
	b) RNase H	RNase H and 5' exonuclease is not used.			
	c) 5' exonuclease	Endonuclease is used for producing			
	d) Polymerase	restrictions within the strand. Thus to			
		remove DNA primer polymerase is used			
		in the prokaryotic organisms			

Seme	e With course code: Molecular Biology BT5310 ster: V : DNA as genetic material	Class : III B.SC BT.BC.C &BT.B.C Month & Week: JULY &II wk
S.No 1.	Questions1. How is the genetic material expressed?a) By replication and transcriptionb) By transcription and translationc) By translation and modificationd) By mutation and transposition	Answer with explanation Answer: b Expression of the genetic material is the series of processes how the sequence of bases in the DNA directs the production of the RNAs and proteins that perform cellular functions and define cellular identity. The basic processes responsible for gene expression are
2.	The bacterial system has RNA polymerases. a) 1 b) 2 c) 3 d) 4	transcription and RNA processing followed by translation. Answer: The bacterial system has 3 RNA polymerases. They are RNA polymerase I, RNA polymerase II and RNA polymerase III. RNA polymerase I transcribes mRNAs, and RNA polymerases II and III transcribes the other specialized RNAs.
3	Which RNA polymerase deals with the production of mRNA? a) RNA polymerase I b) RNA polymerase II c) RNA polymerase III d) RNA polymerase IV	Answer: a Polymerase I is responsible for the transcription of the different types of rRNA except the 5S rRNA. 5S rRNA is transcribed by polymerase III along with some small nuclear RNA genes and the tRNAs. Polymerase II deals with the transcription of the mRNAs.
4	The RNA polymerase holoenzyme has the structural formula of a) α2ββ'ωσ b) αβ2β'ωσ c) α2ββ'ω d) α2ββ'σ	Answer: a In a complete RNA polymerase, called the holoenzyme there are 5 sub units. Of which two are α and one of the each of the other 4 subunits namely β , β' , ω and σ .
5	The α subunits of polymerase has a function of a) Promoter binding b) Initiation c) Elongation d) Termination	Answer: a The α subunits of polymerase is required for the core protein assembly, but has no clear role in transcription assigned to it. However, this subunit plays an important role in promoter binding.

	Course With course code : Molecular Biology BT5310 Class : III B.SC BT.BC.C & BT.B.C Semester : V Month & Week: JULY & IV Wk				
	Initiation of Transcription				
S.No	Questions	Answer with explanation			
1.	What is the consensus sequence of the Pribnow box? a) TATATA b) TATAAT c) TAATA d) TTAAT	Answer: b The Pribnow box is also known as the – 10 promoter site. It was first recognized by Pribnow in 1975. It has a consensus sequence of TATAAT.			
2.	The –35 sequence is highly conserved and has a consensus sequence of a) TGACAA b) TCGAA c) TGCAAC d) TTGACA	Answer: d The –35 sequence is highly conserved in efficient promoters and has a consensus sequence of TTGACA. The first three positions of this hexameric sequence are the mostly conserved.			
3	 -10, - 35 and +1 sites are the consensus promoter sites of sigma factor a) σ70 b) σ32 c) σ54 d) σ28 	Answer: a Different sigma factors recognize different promoter sites. As σ70 sigma factor is the most common sigma factor the highly studied –10, – 35 and +1 sites of promoter belongs to it			
4	Negative supercoiling enhances the rate of transcription. a) True b) False	Answer: a Negative supercoiling enhances the rate of transcription of many genes. This is because it facilitates the unwinding of the DNA duplex by the RNA polymerase			
5	The Pribnow box is present on the coding strand of the DNA template. a) True b) False	Answer: b The Pribnow box or the –10 sequence is present in the sense strand of DNA duplex. The sense strand is also known as the non – coding strand. It also harbors the other two conserved sequences for polymerase binding.			

Course With course code : Molecular Biology	BT5310
Semester : V	
Topic: Termination of Transcription	

Class : III B.SC BT.BC.C &BT .B.C Month & Week: AUG & I wk

S.No	Questions	Answer with explanation
1.	The stem of the hairpin loop of RNA consists mostly of	Answer: b
	a) A, T	The stem of the hairpin loop of RNA
	b) G, C	consists mostly of G, C. This makes
	c) A, G	the structure more stable and thus
	d) C, T	facilitating proper termination
2.	The rho protein has how many subunits.	Answer: b
	a) 4	The rho protein is a hexameric protein
	b) 6	containing 6 subunits. This protein is
	c) 8	known to mediate transcription and is
	d) 10	known as the Rho dependent
		transcription
3.	The rho proteins are ATP independent proteins.	Answer: b
	a) True	The rho protein is an ATP dependent
	b) False	protein. It uses the hydrolysis of ATP
		to terminate the transcription in the
		presence of a single stranded RNA
4.	The rho protein can even bind within operons to	Answer: b
	terminate transcription.	The Rho protein fails to bind to any
	a) True	transcript of RNA that is being
	b) False	translated. Thus rho protein cannot
		bind within operons to terminate
		transcription and binds beyond the
		operon or gene to terminate
		transcription
5.	The hairpin structure generated in the RNA is followed	Answer: a
	by a stretch of oligonucleotide complementary to the	The RNA hairpin is followed by a
	base is	sequence of many "U" residues. Thus
	a) A	the complementary stretch of
	b) T	nucleotides in the DNA strand is
	c) G	adenine or "A".
	d) C	

	e With course code: ster: V	Molecular Biology	BT5310	Class : III B.SC BT.BC.C &BT.B.C Month & Week: AUG & II Wk
	: Genetic code			Wolth & Week. Not & I WK
S.No	Questions			Answer with explanation
1.	The codon is a			Answer: c
	a) Singlet			The codon is a triplet. Singlet and doublet
	b) Duplet			codes are not enough to code for 20 amino
	c) Triplet			acids. Again in case of a quadruplet codon
	d) Quadruplet			there will be 256 possible codons which are
				highly excessive. Triplet codon thus is the

2.	Which of the following is not a termination codon? a) UGA b) AGA c) AGG	minimum requisite having 64 possible codons Answer: d UGA, AGA and AGG are termination codons of which UGA is the universal termination codon and AGA and AGG are mitochondrial termination codons. But UAC is the universal
3	 d) UAC In case of mitochondrial genetic code UGA Codes for a) Tryptophan b) Arginine c) Proline d) Stop 	codon for tyrosineAnswer: aIn case of mitochondrial genetic code UGA isa tryptophan codon. But UGA is a stopcodon in the universal genetic code.
4	There is one amino acid for one genetic code. a) True b) False	Answer: b In a triplet code for a particular amino acid more than one word can be used. This phenomenon is described by saying that the code is degenerate. A non – degenerate could be one where there is one to one relationship between amino acids and the codons so that 44 codons out of 64 will be useless or nonsense codons.
5	The distribution of codon is made in such a way to minimize mutation effect. a) True b) False	Answer: a Inspection of the distribution of codons in the genetic code suggests that the code evolved in such a way as to minimize the deleterious effects of mutations. For instance, mutations in the first position of a codon will often give a similar, if not same, amino acid

Course With course code : Molecular Biology BT5310 Semester : V		Class : III B.SC BT.BC.C &BT.B.C Month & Week:
Topic :DNA as genetic material		
S.No	Questions	Answer with explanation
1.	Which of the following statement is false about	Answer: c
	DNA?	In case of eukaryotes DNA is abundantly
	a) Located in chromosomes	found in nucleoplasm which is
	b) Carries genetic information from parent to	surrounded by the nuclear membrane.
	offspring	This structure is known as nucleus which

	c) Abundantly found in cytoplasmd) There is a precise correlation between amount of DNA and number of sets of chromosome per cell	is found in the cytoplasmic matrix. In case of prokaryotes DNA is found in a less dense cytoplasmic matrix known as the nucleoid
2.	 Which of the following function of DNA is necessary for the purpose of evolution? a) Replication b) Transcription c) Translation d) Mutation 	Answer: d Mutation facilitates the change of bases within a DNA and if this change encodes for a viable amino acid which in turn may lead to the synthesis of a different protein. This protein exerts a phenotypic character to the organism which may be different from the wild type character or may generate a unique character itself, thus leading to evolution
3	Fredrick Griffith's experiment involving Streptococcus pneumoniae lead to the discovery of a) DNA as genetic material b) RNA as genetic material c) Protein as genetic material d) Transforming principle	Answer: d When heat killed virulent (smooth) type bacteria were injected in the mouse along with the living avirulent (rough) type of bacteria the mouse developed the disease, which was an unlikely result. Moreover when the bacteria were isolated from the infected mouse they were found to be of the virulent type. Thus, it was believed that some factor from the heat killed virulent type bacteria transformed the avirulent to virulent type bacteria which was known to be as the transforming principle.
4	Definite results proving DNA to be genetic material was given by a) Fredrick Griffith b) Hershey and Chase c) Avery, Macleod and MacCarty d) Meselson and Stahl	Answer: c Avery, Macleod and MacCarty in their experiment with pneumococcus strains type IIIS and type IIR they performed three separate experimental setups:- i) Using DNase to degrade DNA ii) Using RNase to degrade RNA iii) Using Protease to degrade proteins Thus, when the separate combinations were injected into mice respectively the transforming principle was found to be DNA.
5	What stores the genetic information in DNA? a) Sugar b) Phosphate c) Nitrogenous base d) Polymerase	Answer: c Genetic information is stored in the sequence of nitrogenous base as they are of four types and they are A, T, G and C. The order of their occurrence decides the mRNA sequence which in turn codes amino acids and leading to synthesis of proteins. Sugars and phosphates form

	the backbone and are common to all,
	whereas polymerase helps in the
	replication of DNA template

	e With course code: Molecular Biology BT5310	Class : III B.SC BT.BC.C & BT.B.C
	ster : V	Month & Week: AUG &III wk
	: The Central Dogma Outlines the Flow of Genetic Inf	
S.No	Questions	Answer with explanation
1.	Who were the first to suggest that one strand of	Answer: b
	DNA might act as a template for the synthesis of	In Watson and Crick's paper on the model of
	its complementary strand?	DNA double helix they ended with a
	a) Meselson and Stahl	statement that it had not escaped their
	b) Watson and crick	notice that the specific pairing they had
	c) Walter Flemming	postulated immediately suggested that one
	d) Rosalind Franklin and Maurice Wilkins	strand might be the template for the
		complementary strand synthesis.
2.	Which of the following regarding the basic	Answer: b
	mechanism of gene expression is correct?	Gene expression is carried forward from
	a) DNA —> tRNA—> protein	DNA to mRNA (transcription) and mRNA to
	b) RNA —> cDNA —> mRNA—> protein	protein (translation). To this RNA can be
	c) RNA —> DNA—> mRNA —> protein	converted to cDNA by reverse transcription.
	d) DNA —> protein	Then the process is carry forwarded in the
		same manner.
3	Which of the following does not take part in gene	Answer: a
	expression?	Replication is the coping of the gene in
	a) Replication	double but plays no role in the production of
	b) Transcription	protein thus, expression of gene.
	c) RNA processing	Transcription is the production of RNA from
	d) Translation	DNA and RNA processing is used for
		stabilizing the RNA in cytosol ad excision of
		non-coding regions. Translation is the major
		process which leads to the formation of
		polypeptide chain.
4	Multiple copies of RNA could be formed at the	Answer: a
	same time.	The RNA produced does not remain base
	a) True	paired to the template DNA strand and is
	b) False	displaced only by a few nucleotides behind
		the transcription site. Thus another RNA
		polymerase can attach itself to the DNA
		template facilitating multiple RNA
		production
5	Which of the following statements is true with	Answer: b
	respect to the DNA double helix?	The two strands having complementary
	a) Composed of two or more polynucleotide	base pairing have the same helical geometry
	chains	but have opposite polarity. This is because

	e With course code : Molecular Biology BT5310	
	ster: V	Month & Week: AUG & IV wk
S.No	: Various Classes of RNA Have Different Functions Questions	Answer with explanation
-	-	Answer with explanation
1.	 With respect to polycistronic mRNAs which of the following is wrong? a) Multiple ORFs b) Found in Eukaryotes c) Encodes proteins with related functions d) Multiple polypeptide chain 	Answer: b Eukaryotes only contain 1 ORF per mRNA and are thus monocistronic. Polycistronic mRNAs are generally found in prokaryotes with 2 or more ORFs.
2.	What was the name of ribosome binding site? a) ORF b) P site c) A site d) Shine – Dalgarno sequence	Answer: d Upstream the ORF a 3 – 9 base pair sequence on the 5' side of the sequence is identified as the ribosome binding site (RBS). This element is referred to as the Shine – Dalgarno sequence, named after the scientists who discovered it by comparing the sequences of multiple mRNAs.
3	Which part of the ribosome identifies the Shine – Dalgarno sequence? a) Protein b) 16S rRNA c) 23S rRNA d) 5S rRNA	Answer: b The Shine – Dalgarno sequence is identified by the 16S rRNA. The core of the 16S rRNA has the sequence of 5'CCUCCU3' and is located near the 3' end of the rRNA. Not surprisingly the prokaryotic RBS are most often the subset of sequence 5'AGGAGG3'. Thus, 16S rRNA is the one that aligns the ribosome with the mRNA.
4	Eukaryotic mRNAs recruit ribosomes using the Shine – Dalgarno sequence. a) True b) False	Answer: b Eukaryotic mRNAs recruit ribosomes using specific chemical modifications called 5' cap. The 5' end of the mRNA is capped with methylated Guanine nucleotide to the mRNA via an unusual 5' to 5' linkage. To this methylated Guanine three phosphates are added. This cap binds to the ribosome which then slides along the mRNA length to find the 'AUG' for start of translation.
5	With respect to the composition of ribosome which of the following is correct.	Answer: d There is a discrepancy in the sedimentation

a) Ribosome is composed of 60S and 30S	velocity of the subunits separately and as a
subunit	whole. This is because of the fact that the
b) Eukaryotic ribosome small subunit contains	sedimentation velocity is determined both by
only one 16S rRNA	shape and size and hence, it is not an exact
c) 60S subunit consists of 5S rRNA and 23S rRNA	measure of mass. Prokaryotic ribosome
d) 60S and 40S makes up the 80S ribosome	consists of 50S and 30S subunit and the 30S
	subunit contains only one 16S rRNA. The 50S
	subunit consists of 5S and 23S rRNA

	se With course code : Molecular Biology BT5310 ester : V	Class : III B.SC BT.BC.C &BT.B.C Month & Week: SEP & I wk
Topic	: Transfer RNA	
S.No	Questions	Answer with explanation
1.	The 3' end of tRNA is	Answer: b
	a) 3' CCA 5'	Explanation: All tRNA has a conserved
	b) 3' ACC 5'	sequence of 3' ACC 5'. This sequence is
	c) 3' CCG 5'	conserved so as to facilitate cognate amino
	d) 3' GCC 5'	acid binding
2.	How many loops are present in the clover leaf	Answer: c
	model of tRNA?	There are 4 loops and an acceptor stem in the
	a) 2	clover leaf model of tRNA. The names of the 4
	b) 3	loops are ΨU loop, D loop, anticodon loop
	c) 4	and the variable loop
	d) 5	
3	Which of the following does not contribute to	Answer: c
	the stability of tRNA?	Due to the negative charge of the tRNA
	a) Base and sugar – phosphate backbone	backbone, it is unlikely for the molecule to
	interaction	have a hydrophobic nature. Thus,
	b) Hydrogen bonding	hydrophobic interactions do not play any role
	c) Hydrophobic interactions	in the structural stability of the molecule. On
	d) Base pairing	the other hand, the other interactions such as
		the hydrogen bonding leads to base pairing
		which leads to its classic clover leaf model
4	Why the variable loop is named so?	Answer: a
	a) Variable number of bases	The variable loop sits between the anticodon
	b) Variable region	loop and the ΨU loop and its region is fixed.
	c) Multiple loops present	The name is so given because they vary in size
	d) Variability of presence	from 3 to 21 bases.
5	Thymine is present in tRNA	Answer: a
	a) True	Some unusual bases are present in the tRNA
	b) False	for its improved functioning. One of such pos
		- transcriptional modification done
		enzymatically is the presence of thymine base
		in place of uracil in the primary structure.

Semester: V Topic: Genome Organization

S.No	Questions	Answer with explanation
1.	In the beads on a string model, the bead is made up	Answer: b
	of	The "beads on a string" model is for the
	a) 6 histone proteins	nucleosome. It consists of the 8 histone
	b) 8 histone proteins	protein core or the bead and the DNA
	c) 6 histone proteins and DNA	wound around imitating a string.
	d) 8 histone proteins and DNA	
2.	How many types of histone molecules are found in	Answer: c
	nature?	Eukaryotic cells commonly contain five
	a) 3	abundant histone molecules. They are
	b) 4	named as H1, H2A, H2B, H3 and H4.
	c) 5	
	d) 6	
3	Association of DNA and histone is mediated by	Answer: b
	a) Covalent bonding	Association of DNA and histone is
	b) Hydrogen bonding	mediated by a large number of hydrogen
	c) Hydrophobic bonding	bonds, that is, ≈140 bonds. The majority
	d) Vander Waals interactions	forms between the protein and the
		oxygen of the phosphodiester backbone
		near the minor grove. Only 7 hydrogen
		bonds are made between the protein
		side chains and the bases in the minor
		groves of the DNA.
4	Which of the following is not a characteristic of	Answer: b
	nuclear scaffold?	Two classes of protein contributing to
	a) Associated with loops of 40 – 90 kb	nuclear scaffold have been identified,
	b) Topoisomerase I	that are, topoisomerase II and SMC
	c) SMC protein	protein. Presence of Topo II as a protein
	d) Proteinacious in nature	associated with the structure can be
		proved when the cells are treated with
		drugs which results in DNA breaks at the
		sites of Topo II DNA bindings. The
		treatment generates DNA fragments of
		about 50 kb size
5	Which of the following regions promote histone –	Answer: A
5	DNA association?	Allswell A A:T rich DNA has an intrinsic tendency to
	a) A, T	bend toward the minor grove. Thus A:T
	b) A, G	rich DNA is favored in positions in which
		•
	c) G, C	the minor grove faces the histone
	d) C, T	octamer. G:C rich DNA has the opposite
		tendency thus, is favored when the
	•	major grove faces away from the histone

|--|