482-01/05/2014

UNIVERSITY GRANTS COMMISSIONS -SOUTH EASTERN REGIONAL OFFICE 5-9-194, CHIRAG ALI LANE, IV FLOOR, A.P.S.F.C. BUILDING, HYDERABAD -500 001 Phones: 040 - 23204735, 23200208 FAX: 040 - 23204734, Website: www.ugc.ac.in, email: ugcsero@gmail.com

No.F MRP-4637/14 (SERO/UGC)

March 2014

The Accounts Officer UGC-SERO, Hyderabad

Comcode: APKA018

Category: OBC Sub: Release of Grants-in-aid to Minor Research Projects for the year 2013-2014 . Sir / Madam,

The has reference to the Minor Research Project proposal submitted by MRS MANASA.G Department of CHEMISTRY of GOVT. DEGREE & P.G COLLEGE FOR WOMEN KASHMIR GADDA KARIMNAGAR entitled "DESIGN, SYNTHESIS AND CHARACTERIZATION OF NEW 1,8-N APHTHYRIDINE SUBSTITUTED HETEROCYCLES AND THEIR BIOLOGICAL EVALUATION". The subject expert, who evaluated the proposal, has recommended for financial assistance as detailed below.

S1.	Item	Amount Allocated	Amount Sanctioned
No		(Rs.) ⁻	as first installment
			(Rs.)
1.	Books & Journals	15000.	15000.
2.	Equipment	80000.	80000.
	Total	95000.	95000.
3.	Field work & Travel	5000.	2500.
4.	Chemical & Glass Ware	90000.	45000.
5.	Contingency (incl. Special Needs)	10000.	5000.
6.	Hiring Services	00	<u>00</u>
	Total	105000.	52500.
	Grand Total	200000.	147500.

1. I am further to convey the sanction of the University Grants Commission to the payment of Rs.147500. to the principal, GOVT. DEGREE & P.G COLLEGE FOR WOMEN, KASHMIR GADDA, KARIMNAGAR as first installment (100% Non-Recurring and 50% Recurring grants) towards the above project.

			,	- Frejeen					
	GRANTS IN AID (31)								
(M	Amount Sanctioned	SC (15%)	ST (7.5%)	General (77.5%)					
Q. MTN 1		2D(i)	2D(ii)	5(Viii)					
W	Rs.95000./-	Rs.14250. /-	Rs7125./-	Rs.73625.					
(CHN		CAPITAL (35)							
	Amount Sanctioned	SC (15%)	ST (7.5%)	General (77.5%)					
N1.1/		2D(i)	2D(ii)	5(Viii)					
Jan	Rs.52500./-	Rs7875. /-	Rs3938./-	Rs.40687.J-					
~	2. The above approval is subject to the general conditions of grants prescribed by the UGC for this								
	scheme.		•	•					
	3. The amount of the grant shall be drawn by the Accounts Officer, SERO-UGC, Hyderabad and on the								

Grants-in-Aid bill and shall be disbursed to and credited to the Principal of the College through Electronic mode. The sanction is valid for payment for the year 2013-2014.

In case the Principal investigator is having ongoing Major/Minor Research Project OR has been TO DE MAN transferred/left/retired from the college, the released amount may be returned to UGC-SERO, Hyderabad immediately.

The grantee institution shall ensure the utilization of grants -in-aid for which it is being sanctioned/paid. in case of non-utilization /part utilization, interest @ 10% per annum as amended from time to time on utilized amount from the date of drawl to the date of refund as per provision contained in General Financial Rules of Govt. of India will be charged.

6. The assets acquired wholly or substantially out of UGC's grants shall not be disposed or encumbered or utilized for the purposes other than those for which the grant was given, without proper sanction of the UGC and should, at any time the college ceased to function, such assets shall revert to the UGC.

7. The Principal investigator of the project is required to submit the First year progress report of the work done along with the documents 1) Annual Report of the Project as per Annexure-III 2) Utilization Certificate

duly signed by the Principal Investigator, Principal & Chartered Accountant 3) Statement of Expenditure for the approved heads for the sanctioned amount as per Annexure-V duly signed by the Principal Investigator, Principal & Chartered Accountant.

- The interest earned by the College / Institute on this grants-in-aid shall be treated as additional grant which may be shown in the Utilization Certificate / Statement of Expenditure to furnished by the grantee MRP-4637/14
- 9. The college has to send the filled in Acceptance certificate within 15 days of receipt of this letter, else the college may return back the sanctioned amount to this office. Further if the conditions of the acceptance letter is not acceptable or applicable to the P.I/College, the sanctioned amount be refunded back to SERO-UGC, Hyderabad.
- 13. The guidelines of Minor Research Project have to be followed in toto.
- 14. The Grant is subject to the adjustment on the basis of Utilization Certificate I the prescribed proforma submitted by the University/Institution.
- 15. The University/Institution shall maintain proper accounts of the expenditure out of the Grants, which shall be utilized, only on the approved items of expenditure.
- 16. The Utilization Certificate to the effect that the grant has been utilized for the purpose for which it has been sanctioned shall be furnished to UGC as early as possible after the close of current financial year.
- 17. The college shall maintain a Register of Assets acquired wholly or substantially out of the grant in the prescribed proforma.
- 18. The College shall fully implement to Official 'anguages Policy of Union Govt. and comply with the Official Language Act, 1963 and Official languages (use for official purposes of the Union) Rules, 1976 etc.,
- 19. The sanction issues in exercise of the delegation of powers vide Commission Office Order No. 130/2013 [F.No: 10-11/12 (Admn.I/ A& B) Dated 28.05.2013.

Yours faithfully,

(Dr.G.Srinivas) Joint Secretary

Copy to:

8.

	1.	The Principal (Along with DD / Funds transferred through E-mode)
		GOVT. DEGREE & P.G COLLEGE FOR WOMEN
		KASHMIR GADDA, KARIMNAGAR -505001
	2	MRS_MANASA.G
		Dept. of CHEMISTRY
		GOVT. DEGREE & P.G COLLEGE FOR WOMEN
		KASHMIR GADDA, KARIMNAGAR505001
	-3	The Dean/Director, College Development Council of affiliating University
	4	The Commissioner /Director Collegiate Education, Government of ANDHRA PRADESH
-	- 5	The Principal Accounts General (A & E)- Government of ANDHRA PRADESH
		the
		(Vamsika C)
		Education Officer
	Gar	Can SI No 212 /2013-2014 Gar GIA SI No 345 /2013-2014
	Jui	Details of Payment by RTGS/NFFT to the College

The sanctioned grant of Rs. 147500. has been transferred to your college Account No 040501000016201 at Bank - IOB, KARIMNAGAR with IES Code: IOB A0000405 through RTGS/Direct Credit (CBS to CBS). The Canara Bank, Abids, Hyderabad (CNRB 000 0606) has confirmed the above transfer of funds to your college through RTGS/Direct Crean No. PIG040882405541 transaction vide UTR confirmation Dated 14 Your are requested to confirm the receipt of the above amount in your account by sending back the enclosed stamped receipt with in 7 days. 76-70/13-14 (R.Rayappa) (Accounts Officer

No.SB/EMEQ-283/2014 विज्ञान और इंजीनियरिंग अनुसंधान बोर्ड (एसईआरबी)

and the state of the second second

(विज्ञान और प्रौदयोगिकी विभाग, भारत सरकार के एक सांविधिक निकाय))

Science and Engineering Research Board (SERB)

(A Statutory body under Department of Science & Technology, Govt. of India)

a second s

Contraction of the

5 & 5A, Lower Ground Floor, Vasant Square Mall, Plot No. A, Community Centre, Sector-B, Pocket-5 Vasant Kunj, New Delhi-110070

Contraction of the local division of the loc

Date: 08-08-2017

ORDER

Sub: Research project entitled, "*The development of cost effective solid adsorbents for CO2 capture*" under the guidance of Ms. J Madhavi, Department of Chemistry, Govt. Degree College for Women, Kashmirgadda, , Karimnagar-505001, Andhra Pradesh – Release of grant.

In continuation to SERB's sanction order No. "SB/EMEQ-283/2014 dated 09.03.2016" sanction of the Science & Engineering Research Board (SERB) is here by accorded to the payment of a sum of Rs.4,00,000/- (Rupees four lakh only) as the grant for the financial year(FY) 2017-2018 for implementation of the above said project.

2. Sanction of the Competent authority is also accorded to carry forward the remaining unspent balance of **Rs.59,006/-** from the FY **2016-17** to **CFY 2017-18** for utilization of the same purpose for which it was sanctioned.

3. Sanction of the grant is subject to the conditions as detailed in Terms & Conditions available at website (<u>www.serb.gov.in</u>).

4. It is certified that provisions of GFR 212 relating to Utilization Certificates (UCs) for the funds released under the grant have been satisfied and the UC is enclosed herewith.

5. The expenditure involved is debitable to "Fund for Science & Engineering Research (FSER/SC) – Recurring Head". This release is made under "*Empowerment and Equity Opportunities for Excellence in Science*" program.

6. The Sanction has been issued with the approval of the competent authority under delegated powers and vide Diary No. **SERB/F/4433/2017-18** dated 05-08-2017.

7. The amount of **Rs.4,00,000/- (Rupees four lakh only**) will be drawn by the Finance & Budget Officer of the SERB and will be disbursed by means of RTGS transaction as per their Bank details given below

Account Name	Principal, Govt Degree College Women, Karimnagar
Account Number 040501000016201	
Bank Name & Branch	Indian Bank, Karimnagar
IFSC/RTGS Code	IOBA 0000405

8. The Institute will maintain separate audited accounts for the Project. It is found expedient to keep a part or whole of the grant in a bank account earning interest. The interest earned should be reported to the SERB. The interest thus earned will be treated as a credit to the institute to be adjusted towards further installment of the grant.

9. As per rule 211 of GFR the accounts of Grantee Institution shall be open to inspection by the sanctioning authority / audit whenever the institute is called upon to do so.

10. The Institute will furnish to the SERB, Utilization Certificate and an Audited Statement of Account pertaining to the grant immediately after the end of each financial year.

11. After completion of the project unspent balance if any should be returned as Demand Draft drawn in favor of **"Fund for Science and Engineering Research"** payable at New Delhi.

12. The organization/institute/university should ensure that the technical support/financial assistance provided to them by the Science & Engineering Research Board, a statutory body of the Department of Science & Technology (DST), Government of India should invariably be highlighted/ acknowledged in their media releases as well as in bold letters in the opening paragraphs of their Annual Report.

13. In addition, the investigator/ host institute must also acknowledge the support provided to them in all publications, patents and any other output emanating out of the project/ program funded by the Science & Engineering Research Board, a statutory body of the Department of Science & Technology (DST), Government of India.

डॉ प्रमोद कुमार प्रसाद/ वैज्ञानिक सी Dr. Pramod Kumar Prasad/SCIENTIST-C

To,

Finance & Budget Officer SERB, New Delhi

Copy forwarded for information and necessary action to: -

- 1. The Principal Director of Audit, A.G.C.R. Building, IIIrd Floor I.P. Estate, Delhi-110002.
- 2. Sanction Folder, SERB, New Delhi.
- 3. File Copy
- Ms.J Madhavi
 Department of Chemistry
 Govt. Degree College for Women
 Kashmirgadda, ,
 Karimnagar 505001
 E-Mail: madhavi0521@gmail.com,
- 5. The Director Govt. Degree College for Women Kashmirgadda, Karimnagar – 505001

Formo

<u>डॉ प्रमोद कुमार प्रसाद/ वैज्ञानिक सी</u> Dr. Pramod Kumar Prasad/SCIENTIST-C

and an inclusion

SB/EMEQ-283/2014

SCIENCE & ENGINEERING RESEARCH BOARD

5 & 5A, Lower Ground Floor, Vasant Square Mall, Plot No. A, Community Centre, Sector-B, Pocket-5 Vasant Kunj, New Delhi-110070

ORDER

9/3/216

Dated

Subject: Financial Sanction of the research project titled "The development of cost effective solid adsorbents for CO2 capture", under the guidance of Dr. J Madhavi, Department of Chemistry, Govt. Degree College for Women, Karimnagar-505001, Andhra Pradesh.

Sanction of Science and Engineering Research Board (SERB) is hereby accorded to the above mentioned project at a total cost of Rs.11,00,000/-(Rupees Eleven lakh only) under Recurring head for a duration of 2 years. The items of expenditure for which the total allocation of Rs.11,00,000/- has been approved for a period of 2 years, are given below:

		Total (in Rs.)
1	Head	
	Recurring Items (General)	10.00.000/-
1.	General –A Manpower, Consumables, National Travel, Contingencies and Minor	
	Equipments.	1.00.000/-
2.	General –B	
	Overhead Charges	11.00.000/-
	Total (General-A + General-B)	1 10 - 1

2. Sanction of the **SERB** is also accorded to the payment of **Rs.6,00,000/-(Rupees Six lakhs only) under "Recurring"** being the grant for the year 2015-16, for implementation of the above said research project.

3. The expenditure involved is debitable to "Fund for Science & Engineering Research (FSER-SC)". This release is made under "*Empowerment and Equity Opportunities for Excellence in Science*" program.

4. The Sanction has been issued with approval of the competent authority under delegated powers and vide Diary No, <u>SERB/F/8156/2015-16 dated 03.03.2016</u>.

5. Sanction of the grant is subject to the condition given at the website <u>www.serb.gov.in</u>.

6. Overhead expenses are meant for the host Institute towards the cost for providing infrastructural facilities and general administrative support etc. including benefits to the staff employed in the project.

7. While providing operational flexibility among various subheads under head General-A, it should be ensured that not more than Rs.75,000/- each should be spent for travel and contingency.

Cont.2/-

8. The total release amount of **Rs.6,00,000/- (Rupees six lakhs only)** will be drawn by the **Finance and Budget Officer of the SERB** and will be disbursed by means of RTGS transaction as per their Bank details given below

Account Name	PRINCIPAL, GOVT.DEGREE COLLEGE WOMEN,	
	KARIMNAGAR	
Account Number	040501000016201	
Bank Name & Branch	INDIAN OVERSEAS BANK, KARIMNAGAR	
IFSC/RTGS Code	IOBA0000405	

9. The institute will maintain separate audited accounts for the project. It is found expedient to keep a part or whole of grant in a bank account earning interest, the interest earned should be reported to the SERB, New Delhi. The interest thus earned will be treated as a credit to the institute to be adjusted towards further installment of the grant.

10. As per rule 211 of GFRs, the accounts of project shall be open to inspection by sanctioning authority/audit whenever the institute is called upon to do so.

11. The institute will furnish to the SERB, Utilization Certificate and an Audited statement of accounts pertaining to the grant immediately after the end of each financial year.

12. The manpower sanctioned in the project, if any is co-terminus with the duration of the project and SERB will have no liability to meet the fellowship etc. beyond the duration of the project

13. The sanctioned equipments and consumbles would be procured as per GFR 2005 and its disposal would be done with prior approval of SERB.

14. As this is the first grant being released for the project, no previous U/C is required.

15. After completion of the project unspent balance, if any, should be returned as Demand Draft drawn in favor of **"Fund for Science and Engineering Research"** payable at New Delhi.

(AMITAVA ROY) SCIENTIST-F

To, Finance & Budget Officer SERB, New Delhi.

Copy forwarded for information and necessary action to: -

- 1. The Principal Director of Audit, A.G.C.R. Building, IIIrd Floor I.P. Estate, Delhi-110002.
- 2. Sanction folder, SERB, New Delhi.
- 3. File Copy
- 4. Dr. J Madhavi Department of Chemistry Govt. Degree College for Women Karimnagar-505001, Andhra Pradesh. Email id: madhavi0521@gmail.com
- 5. The Principal Govt. Degree College for Women Karimnagar-505001, Andhra Pradesh.

(AMITAVA ROY) SCIENTIST-F

Mesoporous carbon supported MgO for CO₂ capture and separation of CO₂/N₂

Harshitha Burri^{*}, Rumana Anjum^{*}, Ramesh Babu Gurram^{**}, Harisekhar Mitta^{***}, Suresh Mutyala^{****}, and Madhavi Jonnalagadda^{*,†}

*Department of Chemistry, Government Degree College for Women, Karimnagar, Telangana, India **Catalysis Laboratory, Indian Institute of Chemical Technology, Hyderabad-500007, India ***State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian-116023, China ****Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China

(Received 3 February 2019 • accepted 23 July 2019)

Abstract–Mesoporous carbon derived from pongamia pinnata fruit hulls was used as support to incorporate magnesium oxide for the study of CO_2 adsorption and separation of CO_2/N_2 . All synthesized adsorbents were characterized by PXRD, N_2 adsorption-desorption isotherms, Raman and SEM with EDX techniques. Characterization results revealed the existence of magnesium oxide on mesoporous carbon. CO_2 adsorption on MgO incorporated mesoporous carbon was higher than bulk mesoporous carbon, due to the electrostatic interaction between magnesium oxide and CO_2 . High CO_2 adsorption capacity 1.68 mmol/g was obtained for 10 wt% MgO incorporated mesoporous carbon at 298 K, 1 bar compared to remaining loadings, because of the high content of MgO. However, the N_2 adsorption capacity decreased with the increase of MgO content due to a decrease in surface area and no interaction of the N_2 molecule with the adsorbent. The selectivity of CO_2/N_2 was higher on 10 wt% MgO incorporated mesoporous carbon and the value was 40. The heat of CO_2 adsorption was 36 KJ/mol at low coverage of CO_2 , and CO_2 adsorption capacity was constant in each adsorption cycle over the same adsorbent.

Keywords: MgO, Mesoporous Carbon, CO₂ and N₂ Adsorption, Selectivity, Heat of CO₂ Adsorption

INTRODUCTION

Carbon dioxide is one of the environmental pollutant gases causing global warming. It is produced by the consumption of fossil fuel, high growth of petrochemical, automobile industries, and power plants [1]. CO₂ concentration can be minimized by the development of an alternative energy source until commercial energy sources have to use for the production of energy. Carbon dioxide in the atmosphere can be reduced by carbon capture and separation. In power plants, a large amount of CO_2 is liberated that is absorbed by the use of liquid amine solutions. However, a large amount of energy is required for the regeneration, and volatile organic compounds are liberated which damage the pipeline system [2]. Adsorption is one of the best techniques to reduce the concentration of CO₂. In this process, energy consumption and damage to the pipeline system are less. So far, commercially available carbon materials [3], zeolites [4], clays [5] and silica materials [6] have been used for CO₂ capture and separation.

Activated carbon is one of the most abundant carbon materials [7]. However, large-scale synthesis is hindered because of the non-renewable source. Porous carbon was synthesized from renewable sources such as waste tea [8], coffee grounds [9], cotton stalk [10],

E-mail: madhavi0521@gmail.com

Copyright by The Korean Institute of Chemical Engineers.

peach stone and olive stone [11,12], biodiesel solid residue [13] and rice husk [14]. Pongamia pinnata fruit hulls are also a source for the porous carbon synthesis. Bio-oil is produced from pongamia pinnata seeds. During the production of bio-oil, pongamia pinnata fruit hulls are thrown without any commercial use. From the fruit hulls, we have synthesized mesoporous carbon to capture CO_2 . CO_2 adsorption capacity on mesoporous carbon can be enhanced by the incorporation of basic metal oxides, amine or heteroatom which generates basic sites to capture CO_2 .

Iron oxide-doped MCM-41 has shown CO₂ adsorption capacity 0.87 mmol/g at 298 K, 1 bar [15]. CeO₂ incorporated mesoporous carbon showed CO₂ adsorption 1.77 mmol/g at 303 K, 1 bar [16]. Cu₂O and NiO incorporated porous carbon showed high CO₂ adsorption capacity compared to bulk porous carbon [17,18]. S-doped microporous carbon has shown 3.7 mmol/g of CO2 adsorption at 298 K, 1 bar [19]. N-enriched activated carbon from Procambarus Clarkii shells has shown 2.55 mmol/g of CO₂ adsorption at 298 K, 1 bar [20]. MgO modified mesoporous silica has shown 1.34 mmol/ g of CO₂ at 303 K [21]. Similarly, MgO supported titanium oxide showed 0.48 mmol/g of CO2 adsorption at 298 K [22]. In all reported adsorbents, the CO2 adsorption capacity was higher due to electrostatic interaction between a metal oxide and CO2. In this article, we studied CO2 adsorption on mesoporous carbon and magnesium oxide incorporated mesoporous carbon in low pressure at 298 K. Moreover, the selectivity of CO2/N2, the heat of CO2 adsorption and multiple CO₂ adsorption cycles was studied.

[†]To whom correspondence should be addressed.

EXPERIMENTAL

1. Materials

All analytical grade chemicals such as magnesium nitrate hexahydrate (Mg(NO₃)₂·6H₂O), Orthophosphoric acid (H₃PO₄) were purchased from all commercial sources and used without further purification. Laboratory purified double distilled water was used for the synthesis of adsorbents. Ultra-high pure gases such as helium, carbon dioxide, nitrogen were purchased from local suppliers in India.

2. Synthesis of Adsorbents

Pongamia pinnata fruit hulls were collected from the forest region of Telangana, India. The fruit hulls were dried and crushed into a fine powder, then chemically activated using orthophosphoric acid with 1:1 (w/w%) followed by drying at 100 °C for 12 h, then calcined at 723 K for 4 h in a nitrogen atmosphere. The obtained product was washed with distilled water until neutral pH was obtained, then vacuum dried at 373 K for 12 h. Finally, we got mesoporous carbon [23]; it was denoted as MC. Magnesium oxide incorporated mesoporous carbon was synthesized by the impregnation method. The desired quantity of magnesium nitrate hexahydrate was dissolved in 10 mL distilled water, then 1 g of mesoporous carbon was added to it. The mixture was stirred at room temperature for 1 h, then dried at 373 K for 12 h. The dried product was calcined at 723 K for 4 h in the nitrogen atmosphere. Finally, we got magnesium oxide incorporated mesoporous carbon; it was denoted as xMgO/MC, where x represents the weight percentage of magnesium oxide (x=2, 5 and 10).

3. Characterization

Powdered X-ray diffraction patterns were recorded on Rigaku MiniFlex600 X-ray diffractometer using Ni-filtered Cu K_α radiation $(\lambda = 1.54 \text{ A}^\circ)$ in the scan range $2\theta = 10-80^\circ$. N₂ adsorption-desorption isotherms were measured using Micromeritics ASAP 2020 surface area and porosity analyzer at 77 K. Prior to adsorption study, about 0.1 g of sample was degasified at 473 K for 4 h under vacuum. The specific surface area was calculated by the BET method. Total pore volume at a relative pressure of 0.99 and micropore volume by the t-plot method was calculated from N₂ adsorption-desorption isotherms. Raman spectra were recorded using LabRAM HR800 Raman spectrometer having laser wavelength 514 nm. Morphological image with metal composition was obtained from ZEISS Sigma 300 Scanning electron microscope analyzer.

4. CO₂ and N₂ Adsorption Measurement

 CO_2 and N_2 adsorption isotherms were measured on Micromeritics ASAP 2020 analyzer at low pressure 0-100 kPa at 298 K. Sample temperature was controlled by the thermostatic bath which was connected to water circulating jacket. Free space of the sample was measured using helium gas. About 0.1 g of sample was degasified similar to N_2 adsorption-desorption isotherm measurement at 77 K, then cooled to room temperature for the study of CO_2 and N_2 adsorption isotherms. The selectivity of CO_2/N_2 was calculated using the initial slope of each isotherm by Henry's Law. The heat of CO_2 adsorption was calculated by the Clausius-Clapeyron equation using adsorption isotherms measured at 283, 298 and 303 K. Multiple CO_2 adsorption cycles were also carried out, after desorbing adsorbed CO_2 at 473 K for 2 h under vacuum.

Fig. 1. XRD patterns of MC and MgO incorporated MC.

Fig. 2. (a) N_2 adsorption-desorption isotherms and (b) pore size distribution of MC and MgO incorporated MC.

80

MC 2MgO/MC

5MgO/MC

10MgO/MC

RESULTS AND DISCUSSION

The X-ray diffraction pattern of mesoporous carbon and MgO incorporated mesoporous carbon samples are shown in Fig. 1. MC shows two broad diffraction peaks at 2θ =24.2° and 43.66° having planes (002) and (100), respectively, which are characteristic peaks of mesoporous carbon [24]. Moreover, MgO incorporated mesoporous carbon samples also show diffraction peaks similar to mesoporous carbon and no diffraction peaks related to MgO appeared. It indicates that MgO was well-dispersed over mesoporous carbon. However, the intensity of major diffraction peaks of MC decreased with the increase of MgO loading and shifted towards higher angle. Similar results have been reported on nickel loaded MCM-41 for hydrogen storage [25].

From N₂ adsorption-desorption isotherm, the porosity of carbon material can be found. Fig. 2 shows N2 adsorption-desorption isotherms of MC and MgO incorporated MC at 77 K. Textural properties are presented in Table 1. MC shows a large amount of N₂ uptake below the relative pressure of 0.1 and a hysteresis loop above the relative pressure of 0.4. The isotherm pattern of MC is similar to type-I and type-IV of classification of porous materials by IUPAC [26], which represent that MC has micro and mesopores. The specific surface area, total pore volume and pore size of MC were 840 m²/g, 0.94 cm³/g, and 4.4 nm, respectively. Similarly, MgO incorporated MC samples show the same isotherm pattern similar to MC. But, the amount of N₂ uptake is less. As the content of MgO increased, the amount of N2 uptake was decreased. Hence, a change in textural properties has been observed. The specific surface area was decreased to $421 \text{ m}^2/\text{g}$, the total pore volume $0.34 \text{ cm}^3/\text{g}$ and pore size 3.8 nm. However, micropore surface area and micropore volume were increased, which indicates that incorporated MgO has occupied mesopores of MC.

Raman analysis is used to determine the crystallinity of carbon material. Fig. 3 shows the Raman spectra of MC and 10MgO/MC. Mesoporous carbon shows two Raman bands at 1,325 cm⁻¹ and 1,580 cm⁻¹ which correspond to D-band and G-band, respectively [27]. D-band represents disordered carbon and G-band represents graphitic carbon. The ratio of the intensity of bands (I_D/I_G) represents the degree of graphitization. In mesoporous carbon, the intensity of G-band is higher than D-band. It represents that mesoporous

(T) $I_{D}/I_{c} = 0.97$ $I_{D}/I_{c} = 0.97$ $I_{D}/I_{c} = 0.95$ $I_{D}/I_{c} = 0.95$ $I_{D}/I_{c} = 0.$

Fig. 3. Raman spectra of MC and MgO incorporated MC.

carbon has a graphitic nature. The I_D/I_G value was 0.95 for MC and 0.97 for 10MgO/MC. By incorporation of MgO, the graphitic nature of MC decreased [28]. Morphology with the elemental composition of MC and 10MgO/MC is shown in Fig. 4. MC shows irregular shaped carbon particles (Fig. 4(a)). Same morphology was replicated in 10 wt% MgO incorporated mesoporous carbon, which indicates that magnesium oxide was homogenously distributed over carbon surface (Fig. 4(b)). The amount of magnesium was calculated from EDX and the value was 4.92 wt%.

Fig. 5(a) shows single component adsorption isotherm of CO_2 on MC and MgO incorporated MC samples in low pressure at 298 K. With the increase of CO_2 pressure, the amount of CO_2 adsorption capacity was increased. CO_2 adsorption capacity was 0.9 mmol g⁻¹ for MC, 1.0 mmol g⁻¹ for 2MgO/MC, 1.5 mmol g⁻¹ for 5MgO/MC and 1.68 mmol g⁻¹ for 10MgO/MC at 298 K, 1 bar. The CO_2 adsorption capacity of MgO incorporated MC samples was higher compared to MC because of electrostatic interaction between MgO and CO_2 . With the increase of MgO content, the amount of CO_2 adsorption capacity increased due to the high content of magnesium oxide. It could be confirmed by calculating the amount of

Table 1. Textural properties of MC and MgO incorporated MC

	1 1	0 1					
Adsorbent	$S_{BET}^{a} (m^2 g^{-1})$	S_{micro}^{b} (m ² g ⁻¹)	$V_{total}^{c} (cm^{3} g^{-1})$	V_{micro}^{d} (cm ³ g ⁻¹)	$V_{meso}^{e} (cm^{3} g^{-1})$	V_{meso}^{f} (%)	Pore size ^g (nm)
MC	840	225	0.93	0.11	0.82	88	4.4
2MgO/MC	743	189	0.79	0.11	0.68	86	4.2
5MgO/MC	591	293	0.59	0.16	0.43	73	4.0
10MgO/MC	421	263	0.40	0.14	0.26	65	3.8

^aMultipoint BET surface area

^bMicropore surface area by t-plot

°Total pore volume at P/P₀=0.99

^{*d*}Micropore volume by t-plot

^eMesopore volume=V_{total}-V_{micro}

^fMesopore volume (%)=V_{meso}/V_{total}

^gAverage pore size by BET method (4V/S.A)

50um

Fig. 4. SEM with EDX of (a) MC and (b) 10MgO/MC.

Fig. 5. (a) CO₂ and (b) N₂ adsorption isotherms of MC and MgO incorporated MC at 298 K.

 $\rm CO_2$ adsorption on unit surface area (Fig. 6(a)). $\rm CO_2$ adsorption on the unit surface area of MgO incorporated mesoporous carbon samples was higher than porous carbon. Hence, $\rm CO_2$ adsorption depends on the surface chemistry of the adsorbent instead of surface area. Fig. 5(b) shows N₂ adsorption of synthesized adsorbents under a similar condition of $\rm CO_2$ adsorption. The N₂ adsorption capacity was 0.16 mmol g⁻¹ for MC, 0.15 mmol g⁻¹ for 2MgO/MC, 0.13 mmol g⁻¹ for 5MgO/MC and 0.09 mmol g⁻¹ for 10MgO/MC at 298 K, 1 bar. The decrease in $\rm N_2$ adsorption capacity with the increase of MgO content was due to the decrease in surface area.

The difference in adsorption capacity of CO_2 and N_2 is helpful for studying the selectivity of CO_2 over N_2 . In industrial flue gas, CO_2 is a major component gas, so it is essential to study the selectivity of CO_2/N_2 . It was calculated using the initial slope of each isotherm in low pressure by Henry's law [29]. Fig. 6(b) shows the H. Burri et al.

Fig. 6. (a) CO₂ adsorption on unit surface area, (b) selectivity of CO₂/N₂ on MC and 10MgO/MC.

Fig. 7. (a) Fitting curves of experimental CO₂ adsorption data (b) CO₂ adsorption of MC (closed symbol) and 10MgO/MC (open symbol) at different temperatures.

Table 2. Fitting parameters of Freundlich and Langmuir-Freundlich models

Adcorbont	Freundlich model			Langmuir-Freundlich model			
Adsorbent	$k_F (kPa^{-1})$	n	R ²	$Q_{max} \text{ (mmol g}^{-1}\text{)}$	K (k Pa^{-1})	n	R^2
MC	0.0688	1.7666	0.9909	1.4988	0.0195	1.0609	0.9997
10MgO/MC	0.2005	2.1378	0.9942	3.2968	0.0395	1.4077	0.9999

selectivity of CO_2/N_2 on MC and 10MgO/MC. The selectivity value was 6 for MC and 40 for 10MgO/MC. High selectivity value on 10MgO/MC was due to the high adsorption of CO_2 . To describe the adsorption of CO_2 on the adsorbent, experimental CO_2 adsorption data of all synthesized adsorbents was fitted with Freundlich and Langmuir-Freundlich models [30]. These models can be expressed as follows.

Freundlich model:
$$Q = k_F P^{1/n}$$
 (1)

Langmuir-Freundlich model:
$$Q = Q_{max} \frac{KP^{1/n}}{1+KP^{1/n}}$$
 (2)

 $\begin{array}{c} (1) \\ \text{and } Q_{max} \text{ was h} \\ \text{The interacti} \\ + KP^{1/n} \end{array}$ $\begin{array}{c} (2) \\ \text{by calculating t} \end{array}$

where Q is adsorption capacity at equilibrium in mmol/g, Q_{max} is maximum adsorption capacity in mmol/g, P is pressure in kPa, k_{β} and K are Freundlich, Langmuir-Freundlich coefficients and n is heterogeneity factor. Fitting curves of experimental CO₂ adsorption data of MC and 10MgO/MC are shown in Fig. 7(a) and fitting parameters are presented in Table 2. Langmuir-Freundlich model was well-fitted with experimental CO₂ adsorption data of both adsorbents with regression coefficient (R²) higher than 0.999, and Q_{max} was higher on 10MgO/MC.

The interaction between adsorbent and adsorbate can be known by calculating the heat of adsorption using the Clausius-Clapeyron

1486

September, 2019

Fig. 8. (a) Heat of CO₂ adsorption on MC and 10MgO/MC, (b) CO₂ adsorption cycles of 10MgO/MC at 298 K.

Adsorbent	CO_2 adsorption at 298 K, 1 bar (mmol g ⁻¹)	Selectivity (CO ₂ /N ₂)	Reference
NiO/mesoporous carbon	2.02 (303 K)	17.6	[16]
Fe ₂ O ₃ doped MCM-41	0.87	-	[15]
Zeolite-13X	1.70	-	[32]
Karanja seed cake	1.78 (343 K)	-	[33]
MgO/Al ₂ O ₃	1.60 (333 K)	-	[34]
N-doped microporous carbon	1.9	21	[29]
MgO/mesoporous carbon	1.68	40	Present work

equation [31]:

$$\ln P = \frac{-Q_{st}}{RT} + C$$

Here, P is pressure in kPa, T is the absolute temperature in K, R is universal gas constant (8.314 J/K·mol), C is constant and Q_{st} is the heat of adsorption. The partial pressure at different temperatures for the fixed amount of gas uptake can be obtained from the Langmuir-Freundlich model. By drawing a graph between In P versus 1/T with straight line fitting, we can obtain the slope. Finally, Q_{st} was calculated from the slope. For the calculation of heat of CO_2 adsorption on MC and 10MgO/MC, we measured CO2 adsorption at 283 K and 303 K also (see Fig. 7(b)). A decrease in CO₂ adsorption capacity was observed on both adsorbents with the increase of temperature. Fig. 8(a) shows the heat of CO₂ adsorption with gas adsorption capacity on MC and 10MgO/MC. The heat of CO₂ adsorption was 36.3-36.0 KJ/mole for MC and 36-34.5 KJ/mole for 10MgO/MC. At low coverage of CO_2 , the heat of CO_2 adsorption for 10MgO/MC was higher than MC. It was due to the strong interaction between MgO and CO2. The Qst was decreased to 34.5 KJ/mole with the increase of CO₂ adsorption. For both adsorbents, the heat of CO2 adsorption was increased after the minimum with an increase of CO2 adsorption capacity. It was due to the heterogeneity of the adsorbent.

Adsorption stability of an adsorbent can be known by multiple adsorption cycles. Fig. 8(b) shows multiple CO_2 adsorption cycles of 10MgO/MC at 298 K. Before study of each adsorption cycle, the

adsorbent was degasified at 473 K for 2 h under vacuum. 10MgO/ MC showed constant CO₂ adsorption capacity up to five cycles. The CO₂ adsorption of 10MgO/PC was compared with some of the reported adsorbents (Table 3). The CO₂ adsorption capacity value was between the adsorption capacity of NiO supported on mesoporous carbon [16], iron oxide doped MCM-41 [15] and Zeolite-13X [32]. Hence, it is one of the adsorbents that has shown good adsorption capacity and selectivity.

CONCLUSIONS

Mesoporous carbon and MgO incorporated mesoporous carbon samples were used as an adsorbent for the study of CO₂ capture and separation. The presence of MgO on mesoporous was confirmed by all characterization techniques. 10MgO/MC showed high adsorption of CO₂ 1.68 mmol/g at 298 K, 1 bar, which was higher than MC by electrostatic interaction between CO₂ and MgO. High selectivity of CO₂ over N₂ was 40 and heat of CO₂ adsorption was 36 KJ/mole at low coverage of CO₂ on 10MgO/MC. Stable CO₂ adsorption capacity was maintained in each adsorption cycle. Therefore, mesoporous carbon derived from pongamia pinnata fruit hulls can be used as an adsorbent and support to incorporate metal oxides to study CO₂ adsorption and separation.

ACKNOWLEDGEMENT

HB and RA acknowledge the Science and Engineering Research

Board, Department of Science and Technology, New Delhi, India for the financial support (Grant No. EMEQ-283/2014).

REFERENCES

- S. Hosseini, I. Bayesti, E. Marahel, F. Eghbali Babadi, L. Chuah Abdullah and T. S. Y. Choong, *J. Taiwan Inst. Chem. Eng.*, 52, 109 (2015).
- 2. D. Aaron and C. Tsouris, Sep. Purif. Technol., 40, 321 (2005).
- M. K. Al Mesfer and M. Danish, J. Environ. Chem. Eng., 6, 4514 (2018).
- 4. R. Seabra, A. M. Ribeiro, K. Gleichmann, A. F. P. Ferreira and A. E. Rodrigues, *Micropor. Mesopor. Mater.*, 277, 105 (2019).
- J. Pires, M. Bestilleiro, M. Pinto and A. Gil, Sep. Purif. Technol., 61, 161 (2008).
- C. Knöfel, J. Descarpentries, A. Benzaouia, V. Zeleňák, S. Mornet, P. L. Llewellyn and V. Hornebecq, *Micropor. Mesopor. Mater.*, 99, 79 (2007).
- B. B. Saha, S. Jribi, S. Koyama and I. I. El-Sharkawy, J. Chem. Eng. Data, 56, 1974 (2011).
- 8. I. I. Gurten, M. Ozmak, E. Yagmur and Z. Aktas, *Biomass Bioenergy*, **37**, 73 (2012).
- 9. S. Rattanapan, J. Srikram and P. Kongsune, *Energy Procedia*, **138**, 949 (2017).
- H. Deng, G. Li, H. Yang, J. Tang and J. Tang, *Chem. Eng. J.*, 163, 373 (2010).
- 11. T. Uysal, G. Duman, Y. Onal, I. Yasa and J. Yanik, *J. Anal. Appl. Pyrolysis*, **108**, 47 (2014).
- S. M. Yakout and G. Sharaf El-Deen, Arabian J. Chem., 9, S1155 (2016).
- 13. X. Zhao, W. Li, F. Kong, H. Chen, Z. Wang, S. Liu and C. Jin, *Mater. Chem. Phys.*, **219**, 461 (2018).
- 14. Y. Gao, L. Li, Y. Jin, Y. Wang, C. Yuan, Y. Wei, G. Chen, J. Ge and H. Lu, *Appl. Energy*, **153**, 41 (2015).
- 15. K. C. Chanapattharapol, S. Krachuamram and S. Youngme, *Micropor. Mesopor. Mater.*, **245**, 8 (2017).

- M. Li, K. Huang, J. A. Schott, Z. Wu and S. Dai, *Micropor. Mesopor. Mater.*, 249, 34 (2017).
- 17. B. J. Kim, K. S. Cho and S. J. Park, *J. Colloid Interface Sci.*, **342**, 575 (2010).
- 18. D. I. Jang and S. J. Park, Fuel, 102, 439 (2012).
- J. Shi, N. Yan, H. Cui, Y. Liu and Y. Weng, *J. Environ. Chem. Eng.*, 5, 4605 (2017).
- 20. W. Cai, S. Zhang, X. Hu and M. Jaroniec, *Energy Fuels*, **32**, 9701 (2018).
- 21. H. Zhao, W. Yan, Z. Bian, J. Hu and H. Liu, *Solid State Sci.*, **14**, 250 (2012).
- 22. H. Jeon, Y. J. Min, S. H. Ahn, S.-M. Hong, J. S. Shin, J. H. Kim and K. B. Lee, *Colloids Surf.*, *A*, **414**, 75 (2012).
- 23. M. A. Islam, S. Sabar, A. Benhouria, W. A. Khanday, M. Asif and B. H. Hameed, *J. Taiwan Inst. Chem. Eng.*, **74**, 96 (2017).
- 24. B. Chen, Z. Yang, G. Ma, D. Kong, W. Xiong, J. Wang, Y. Zhu and Y. Xia, *Micropor. Mesopor. Mater.*, 257, 1 (2018).
- 25. S. J. Park and S. Y. Lee, J. Colloid Interface Sci., 346, 194 (2010).
- 26. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 60, 309 (1938).
- 27. W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang and H. Zhang, *J. Mater. Chem. A*, **3**, 5656 (2015).
- 28. S. Cheng, L. Zhang, H. Xia and J. Peng, *Green Process. Synth.*, 6, 487 (2017).
- M. Saleh, J. N. Tiwari, K. C. Kemp, M. Yousuf and K. S. Kim, *Environ. Sci. Technol.*, 47, 5467 (2013).
- C. Goel, H. Bhunia and P. K. Bajpai, J. Environ. Chem. Eng., 4, 346 (2016).
- 31. J. Yan, Y. Yu, C. Ma, J. Xiao, Q. Xia, Y. Li and Z. Li, Appl. Therm. Eng., 84, 118 (2015).
- J. McEwen, J. D. Hayman and A. Ozgur Yazaydin, *Chem. Phys.*, 412, 72 (2013).
- 33. K. Upendar, T. V. Sagar, G. Raveendra, N. Lingaiah, B. V. S. K. Rao, R. B. N. Prasad and P. S. S. Prasad, *RSC Adv.*, 4, 7142 (2014).
- 34. S. Zhang, W. Cai, J. Yu, C. Ji and N. Zhao, *Chem. Eng. J.*, **310**, 216 (2017).

Technology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tent20

Porous carbon supported calcium oxide for CO₂ adsorption and separation of CO₂/CH₄

Madhavi Jonnalagadda , Sobhy M. Ibrahim , Omar H. M. Shair & Suresh Mutyala

To cite this article: Madhavi Jonnalagadda , Sobhy M. Ibrahim , Omar H. M. Shair & Suresh Mutyala (2020): Porous carbon supported calcium oxide for CO₂ adsorption and separation of CO₂/ CH₄, Environmental Technology, DOI: <u>10.1080/09593330.2020.1791973</u>

To link to this article: https://doi.org/10.1080/09593330.2020.1791973

View supplementary material 🖸

Accepted author version posted online: 03 Jul 2020. Published online: 16 Jul 2020.

🖉 Submit your article to this journal 🗹

Article views: 7

View related articles 🗹

View Crossmark data 🗹

Porous carbon supported calcium oxide for CO_2 adsorption and separation of CO_2/CH_4

Madhavi Jonnalagadda^{a,b}, Sobhy M. Ibrahim^{c,d}, Omar H. M. Shair^e and Suresh Mutyala^f

^aDepartment of Chemistry, Government Degree College for Women, Affiliated to Satavahana University, Karimnagar, India; ^bDepartment of Chemistry, Sri Ramachandra Arts & Science College, Affiliated to Kakatiya University, Karimnagar, India; ^cDepartment of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia; ^dDepartment of Analytical Chemistry and Control, Hot Laboratories and Waste Management Center, Atomic Energy Authority, Cairo, Egypt; ^eDepartment of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia; ^fDepartment of Applied and Environmental Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary

ABSTRACT

Calcium oxide incorporated porous carbon materials were synthesized by the impregnation method to study CO₂ adsorption and separation of CO₂/CH₄. The X-ray diffraction, Raman analysis, N₂ isotherms at 77 K, and SEM with EDX analysis were used to characterize synthesized materials. XRD and N₂ isotherm results have confirmed that synthesized carbon has porosity, and EDX analysis has reported that the presence of CaO on porous carbon. 10CaO/porous carbon has shown 31 cm³ g⁻¹ of CO₂ adsorption which was higher than bare porous carbon CO₂ adsorption 17.5 cm³ g⁻¹ at 298 K, 1 bar. It was attributed to electrostatic interaction between CaO and CO₂. However, CH₄ adsorption was decreased by a decrease in surface area. The selectivity of CO₂/CH₄ was higher for 10CaO/porous carbon and the heat of CO₂ adsorption was 36 KJ/mol at high adsorption of CO₂. Moreover, CO₂ adsorption was the same in each adsorption cycle.

ARTICLE HISTORY

Received 29 April 2020 Accepted 28 June 2020

KEYWORDS CaO; porous carbon; carbon dioxide; adsorption and separation; heat of adsorption

Supplemental data for this article can be accessed https://doi.org/10.1080/09593330.2020.1791973

 $\ensuremath{\mathbb{C}}$ 2020 Informa UK Limited, trading as Taylor & Francis Group

Check for updates

CONTACT Madhavi Jonnalagadda ⊠ madhavi0521@gmail.com 🗈 Department of Chemistry, Government Degree College for Women, Affiliated to Satavahana

University, Karimnagar 505001, Telangana, India; Department of Chemistry, Sri Ramachandra Arts & Science College, Affiliated to Kakatiya University, Karimnagar 505001, Telangana, India

1. Introduction

CO₂ is one of the pollutant gases which causes global warming worldwide [1]. It is liberated by the consumption of fossil fuel and the high growth of petrochemical and coal industries. The concentration of CO₂ in the atmosphere can be diminished by absorption, membrane separation, and adsorption techniques [2-4]. Out of these, adsorption is the most prominent method which reduces the high consumption of energy for the regeneration and no corrosion of the equipment. Adsorbents such as activated carbon [5], silica [6], clay [7,8] and zeolites [9-11] were used for CO₂ adsorption and separation. The activated carbon material was hindered because of the unavailability of renewable sources. So, researchers have been using other resources such as rice husk [12], cotton stalk [13], waste tea [14], pongamia pinnata fruit hulls [15] and biodiesel solid residue [16] to synthesize carbon material.

Among these, we have chosen pongamia pinnata fruit hulls to synthesize porous carbon by pyrolysis. The carbon material can be used in research areas such as catalysis [17], gas adsorption and separation [18,19], and optical property study [20]. In the gas adsorption study, the adsorption capacity of carbon material can be increased by the incorporation of metal oxide [21]. Isahak et al have studied CO₂ adsorption using Cu-MgO/carbon nanocomposite and reported 58.5 cm³ g^{-1} of CO₂ adsorption at 303 K, 1 bar [22]. Chamila et al have synthesized mesoporous MgO-SiO₂ composite for CO₂ adsorption at ambient and elevated temperatures. The CO₂ adsorption capacity was 40.3 cm³ q^{-1} at 298 K, 1 bar by physisorption [23]. Kenji et al have also reported CO_2 adsorption capacity 40 cm³ g⁻¹ for ZnO supported on activated carbon at 303 K, 1 bar [24].

Recently, our research group has studied CO_2 adsorption and separation of CO_2/N_2 on MgO incorporated mesoporous carbon and reported 37.6 cm³ g⁻¹ of CO_2 adsorption at 298 K, 1 bar [25]. In the above reported all adsorbents, CO_2 adsorption was higher on composite material compared to bulk material due to the electrostatic interaction between adsorbent and CO_2 . In this article, we have studied CaO incorporated porous carbon for CO_2 , CH_4 adsorption, and separation of CO_2/CH_4 . Along with this, the selectivity of CO_2/CH_4 , heat of CO_2 adsorption, CO_2 adsorption cycles were also studied.

2. Experimental

2.1. Chemicals

Chemicals such as calcium nitrate tetrahydrate (Ca(NO₃)₃.4H₂O, \geq 99%) and phosphoric acid (H₃PO₄, 85 wt%) were purchased from M/s. Sigma-Aldrich,

India, and used without purification. Pongamia pinnata fruit hulls were purchased from a local vendor, India. Double distilled water was used for the synthesis of adsorbents. Gas cylinders such as carbon dioxide, nitrogen, helium, and methane with ultra-high purity were purchased from the local vendor, India.

2.2. Synthesis of porous carbon and CaO/porous carbon

Porous carbon was synthesized from pongamia pinnata fruit hulls by activation and pyrolysis in inert gas. Firstly, pongamia pinnata fruit hulls were dried and crushed into a fine powder. The powder was activated using phosphoric acid at room temperature for 24 h. The activated sample was calcined at 723 K for 4 h with a heating rate of 10°C/min in argon flow then cooled to room temperature slowly. The obtained sample was washed with distilled water until pH reached to neutral and dried at 373 K for 12 h. Finally, we obtained porous carbon and denoted as PC [26]. Porous carbon supported calcium oxide was synthesized by the impregnation method using calcium nitrate tetrahydrate as a precursor [27]. The desired amount of Ca (NO₃)₃.4H₂O was dissolved in 5 mL distilled water then 1 g of porous carbon was added. The mixture was stirred at room temperature for 1 h then dried at 373 K for 12 h. The dried material was calcined at 723 K for 4 h with a heating rate of 10°C/min in argon flow. Finally, we obtained calcium oxide incorporated porous carbon (Scheme 1). It labelled as xCaO/PC. (x = 2, 5 and 10 wt %).

2.3. Characterization

Rigaku Ultima-IV X-ray diffractometer was used to record the X-ray diffractions for each sample using Xray source having Cu K_{α} radiation operated at voltage 40 kV and current 30 mA. The porosity of the sample was determined by measuring N₂ adsorption-desorption isotherms at 77 K using Micromeritics ASAP 2020 Surface area and porosity analyzer. Before isotherm measurement, the sample was activated at 473 K for 2 h under vacuum. Multipoint BET surface area was calculated at $P/P_0 = 0.05-0.3$ and total pore volume at $P/P_0 = 0.99$. The t-plot method was used to calculate the micropore volume. Mesopore volume was obtained by subtracting micropore volume from total pore volume. LabRam HR 800 Raman spectrometer was used to record the Raman spectra. Hitachi S-4800 scanning electron microscopy analyzer was used to obtain morphological images and chemical composition of the sample.

Scheme 1. Stepwise synthesis of CaO incorporated porous carbon.

2.4. Gas adsorption measurement

Micromeritics ASAP 2020 gas adsorption analyzer was used to measure CO_2 and CH_4 adsorption isotherms in low pressure from 0 to 100 kPa at 298 K. Thermostatic bath was connected to water circulating jacket to control sample temperature. Helium gas was used to measure the free space of the sample in the sample tube. About, 0.1 g sample was activated at 473 K for 2 h under vacuum, before measurement of CO_2 and CH_4 adsorption. The initial slope method was used to calculate the selectivity of CO_2/CH_4 . The Clausius–Clapeyron equation was used to calculate the heat of adsorption using adsorption isotherms measured at 283, 298, and 298 K. The CO_2 adsorption cycles were studied by desorbing adsorbed CO_2 in each adsorption cycle at 473 K for 2 h in a vacuum.

3. Results and discussion

Figure 1 shows the X-ray diffraction patterns of porous carbon and CaO loaded porous carbon.

Broad diffraction peaks were obtained at $2\theta = 24.18^{\circ}$ and 43.62° which were matched with previously reported porous carbon material [28]. In CaO loaded porous carbon material, the major diffraction peaks of porous carbon were present. Along with this, a few new diffraction peaks have appeared with the increase in CaO loading. The diffraction peaks of CaO were $2\theta = 28.9^{\circ}$, 32.7°, 41.3°, 49.8°, 54.8°, and 63.1° (JCPDS card no. 00-037-1497) [29]. In the low content of CaO, the diffraction peaks of CaO were not undetectable by XRD. Kingkaew et al have reported similar results of iron oxide doped MCM-41 for CO₂ adsorption [30].

The N_2 adsorption-desorption isotherms were measured to know the porosity of the synthesized materials. Figure 2 shows the N_2 adsorption-desorption isotherms of porous carbon and CaO incorporated porous carbon at 77 K. The textural properties such as surface area, pore-volume, and pore size was presented

Figure 1. XRD patterns of porous carbon and CaO incorporated porous carbon.

in Table 1. The bulk porous carbon material has shown a high amount of N₂ adsorption below the relative pressure 0.1 and a hysteresis loop in between the relative pressure 0.4-1. From the classification of porous materials by IUPAC, the isotherm pattern of bulk porous carbon comes to the category of type-I and type-IV which indicated that the presence of micro and mesopores in the synthesized carbon material [31]. The specific surface area, pore-volume, and pore size of porous carbon were $630 \text{ m}^2 \text{ g}^{-1}$, $0.72 \text{ cm}^3 \text{ g}^{-1}$ and 4.6 nm respectively. In CaO incorporated porous carbon materials, N₂ adsorption was decreased with an increase in CaO loading. It was attributed to the blockage of pores by incorporated CaO. Consequently, there was a change in the textural properties. The specific surface area was decreased to 494 m² g⁻¹, pore volume to 0.48 cm³ g⁻¹ and pore size to 3.9 nm.

Raman spectra of porous carbon and 10CaO/porous carbon were shown in Figure 3. Two Raman bands were obtained at 1337 and 1585 cm⁻¹ which correspond

Figure 2. (a) N₂ adsorption-desorption isotherms at 77 K (closed symbol: adsorption; open symbol: desorption) and (b) pore size distribution of porous carbon and CaO incorporated porous carbon.

l aple 1	 Textural 	properties	or all	synthesized	adsorbents.	
		-	L.	-		

Sample	S _{BET} (m ² g ⁻¹)	V_{total}^{b} (cm ³ g ⁻¹)	V _{meso} (cm ³ g ⁻¹)	V ^a _{micro} (cm ³ g ⁻¹)	Pore size ^e (nm)
Porous carbon	630	0.72	0.61	0.11	4.6
2CaO/porous carbon	616	0.70	0.65	0.05	4.5
5CaO/porous carbon	571	0.61	0.49	0.12	4.3
10CaO/porous carbon	494	0.48	0.37	0.11	3.9

^aBET surface area, ^bTotal pore volume at P/P₀ = 0.98, ^cMesopore volume = $V_{total} - V_{micror}$, ^dMicropore volume by t-plot method, ^eAverage pore size by BET.

Figure 3. Raman spectra of porous carbon and 10CaO/porous carbon.

to D-band and G-band respectively and the intensity of G-band was higher [32]. The ratio of the intensity of D and G-bands for porous carbon and 10CaO/porous carbon was 0.91 and 0.94 respectively. It indicated that a decrease in the graphitic nature of porous carbon material by the incorporation of CaO. Morphological images and chemical composition of porous carbon and 10CaO/porous carbon were measured using SEM with EDX and showed in Figure 4. Disordered carbon particles were observed in porous carbon material (Figure 4a). The incorporated CaO has covered the surface of disordered porous carbon material (Figure 4b). From EDX analysis, the wt% of the calcium in 10CaO incorporated porous carbon material was 0.93 wt%. In both samples, phosphorous was also detected due to the use of phosphoric acid in the activation of dry pongamia pinnata fruit hulls.

The CO₂ adsorption for all synthesized samples was shown in Figure 5a. With the increase of pressure, the amount of CO₂ adsorption capacity was increased and no equilibrium was attained. The CO₂ adsorption for bulk porous carbon was 17.5 cm³ g⁻¹ at 298 K, 1 bar. For CaO incorporated porous carbon, the CO₂ adsorption was higher compared with bulk porous carbon. Moreover, the CO₂ adsorption was also increased with an increase of CaO loading. It was due to the electrostatic interaction between CaO and acidic CO₂ molecules. The CO₂ adsorption capacity for CaO incorporated porous carbon, 23 cm³ g⁻¹ for 5CaO/porous carbon, and 31 cm³ g⁻¹ for 10CaO/porous carbon at 298 K, 1 bar. High CO₂ adsorption was obtained for 10CaO/

Figure 4. SEM with EDX of (a) porous carbon and (b) 10CaO/porous carbon.

porous carbon by the presence of more number of CaO molecules.

In CaO incorporated porous carbon samples, CO₂ adsorption was dependent on surface chemistry (nature) of the material instead of surface area. We have confirmed by calculation of CO₂ adsorption per unit surface area of the adsorbent (Figure S1). The CO₂ adsorption per unit surface area was higher for CaO incorporated porous carbon compared with bulk porous carbon. Apart from CO₂ adsorption, we have also measured CH₄ adsorption for porous carbon and 10CaO/porous carbon similar to the CO2 adsorption study (Figure 5b). CH₄ adsorption was increased with an increase in pressure. For porous carbon, CH₄ adsorption was 9.6 and 7 cm³ g⁻¹ for 10CaO/porous carbon at 298 K, 1 bar. CH₄ adsorption was decreased in 10CaO/ porous carbon by the decrease in surface area and no interaction between adsorbent and CH₄ molecule.

The change in CO_2 and CH_4 adsorption capacity of porous carbon and 10CaO/porous carbon was useful to calculate the selectivity of CO_2/CH_4 . The initial slope method was used to calculate the selectivity [33,34]. It was shown in Figure 6. The selectivity of CO_2/CH_4 for

porous carbon and 10CaO/porous carbon was 3 and 9 respectively at 298 K, 1 bar. The CO₂/CH₄ selectivity obtained on 10CaO/porous carbon was higher than some of the previously reported adsorbents such as ZIF-68 [35], MOF-177 [36], and PAF-1 [37]. The experimental CO₂ adsorption data of porous carbon and 10CaO/porous carbon was fitted with the Langmuir-Freundlich model and the Freundlich model to know the adsorption behaviour of CO₂ (Figure S2) [38]. The fitting model equations were presented in supplementary material and fitting parameter values were presented in Table S1. Good fitting was obtained in the Langmuir-Freundlich model with regression coefficient $R^2 > 0.999$ and maximum CO₂ adsorption capacity (Q_{max}) was higher for 10CaO/porous carbon.

The heat of adsorption is an important parameter in gas adsorption studies. From the heat of adsorption, we can know the interaction of adsorbate with the adsorbent. It can be calculated using the Clausius–Clapeyron equation reported in the reported article [39].

$$lnP=~-~\frac{Q_{st}}{RT}+~C$$

Figure 5. (a) CO₂ adsorption of porous carbon and CaO incorporated porous carbon at 298 K (b) CH₄ adsorption of porous carbon and 10CaO/porous carbon at 298 K.

Where Q_{st} is the heat of adsorption (KJ/mol), R is the universal gas constant (8.314 J/K.mol), P is pressure (kPa), T is the temperature (K) and C is constant. The slope obtained by drawing a graph between ln P vs 1/T with strait line fitting was used to calculate the heat of adsorption. To calculate the heat of CO₂ adsorption for 10CaO/ porous carbon, CO₂ adsorption at 283 and 303 K was also measured (Figure S3). With an increase in temperature, CO₂ adsorption was decreased by an increase in the

kinetic energy of CO₂. The heat of CO₂ adsorption for 10CaO/porous carbon was shown in Figure 7a. The Q_{st} was 20–36 KJ/mol. At high adsorption of CO₂, Q_{st} was higher due to the non-uniform distribution of CaO on the surface of porous carbon material.

The CO₂ adsorption cycles of 10CaO/porous carbon were shown in Figure 7b to know the CO₂ adsorption stability. Before the study of each adsorption cycle, the sample was heated at 473 K for 2 h under vacuum

Figure 6. CO₂/CH₄ selectivity of porous carbon and 10CaO/porous carbon.

Figure 7. (a) The heat of CO₂ adsorption and (b) CO₂ adsorption cycles of 10CaO/porous carbon.

Table 2. Comparison	of CO ₂ adsorption of	10CaO/porous	carbon
in reported articles.			

Adsorbent	Adsorption method	CO_2 adsorbed at 298 K, 1 bar (cm ³ g ⁻¹)	Reference
Zeolite-13X	Volumetric	38	[42]
CuO/polymer	Volumetric	28	[43]
Amine modified Mg-Al LDH	Gravimetric	26	[44]
Mesoporous Al ₂ O ₃ - organosilica	Volumetric	22	[40]
Mesoporous CaO- SiO ₂	Volumetric	38	[23]
CaO/porous carbon	Volumetric	31	Present work

to remove adsorbed CO_2 . The CO_2 adsorption capacity was constant in each adsorption cycle which indicated that the adsorbent has good adsorption stability. 10CaO/porous carbon CO_2 adsorption capacity was compared with previously reported adsorbents CO_2 adsorption capacity (Table 2). It was in between CO_2 adsorption capacity of mesoporous Al_2O_3 -organosilica [40], mesoporous CaO-SiO₂ [41], and mesoporous MgO-Al₂O₃ [23]. Hence, CaO incorporated porous carbon is also one of the adsorbents to study CO_2 adsorption and separation.

4. Conclusion

In this work, we have synthesized porous carbon and CaO incorporated porous carbon materials to study CO_2 adsorption and separation of CO_2/CH_4 . High adsorption of CO_2 was obtained for CaO incorporated porous carbon compared with bulk porous carbon because of electrostatic interaction between CaO and CO_2 . Moreover, the selectivity of CO_2/CH_4 was also higher for 10CaO incorporated porous carbon. The heat of CO_2 adsorption was 36 KJ/mole at high coverage of CO_2 by non-uniform distribution of CaO on the porous carbon support. The CO_2 adsorption capacity was constant for 10CaO/porous carbon in multiple adsorption cycles. Therefore, porous carbon supported basic metal oxides can be used for CO_2 adsorption and separation.

Acknowledgment

MJ acknowledges the SERB, Department of Science and Technology, New Delhi, India for financial support (EMEQ-283/ 2014). This work was supported by Researchers supporting project number (RSP-2019/100), King Saud University, Riyadh, Saudi Arabia.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by Researchers supporting project number (RSP-2019/100), King Saud University, Riyadh, Saudi Arabia. Science and Engineering Research Board.

References

- Shukla JB, Verma M, Misra AK. Effect of global warming on sea level rise: a modeling study. Ecol Complex. 2017;32:99–110.
- [2] Yuan Y, Rochelle GT. CO2 absorption rate and capacity of semi-aqueous piperazine for CO₂ capture. Int J Greenhouse Gas Control. 2019;85:182–186.
- [3] Li S, Jiang X, Sun H, et al. Mesoporous dendritic fibrous nanosilica (DFNS) stimulating mix matrix membranes towards superior CO₂ capture. J Memb Sci. 2019;586:185–191.
- [4] Grande CA, Roussanaly S, Anantharaman R, et al. CO₂ Capture in natural gas production by adsorption processes. Energy Procedia. 2017;114:2259–2264.
- [5] Ogungbenro AE, Quang DV, Al-Ali K, et al. Activated carbon from date seeds for CO₂ capture applications. Energy Procedia. 2017;114:2313–2321.
- [6] Wang HC, Lu C, Bai H, et al. Pilot-scale production of mesoporous silica-based adsorbent for CO² capture. Appl Surf Sci. 2012;258:6943–6951.
- [7] Gómez-Pozuelo G, Sanz E, Arencibia A, et al. CO₂ adsorption on amine-functionalized clays. Microporous Mesoporous Mater. 2019;282:38–47.

- [8] Yeste MP, Gatica JM, Ahrouch M, et al. Clay honeycomb monoliths as low cost CO₂ adsorbents. J Taiwan Inst Chem Eng. 2017;80:415–423.
- [9] Pham T-H, Lee B-K, Kim J, et al. Enhancement of CO₂ capture by using synthesized nano-zeolite. J Taiwan Inst Chem Eng. 2016;64:220–226.
- [10] Chen SJ, Zhu M, Fu Y, et al. Using 13X, LiX, and LiPdAgX zeolites for CO₂ capture from post-combustion flue gas. Appl Energy. 2017;191:87–98.
- [11] Modak A, Jana S. Advancement in porous adsorbents for post-combustion CO₂ capture. Microporous Mesoporous Mater. 2019;276:107–132.
- [12] Cai R, You B, Chen M, et al. Metal-free core-shell structured N-doped carbon/carbon heterojunction for efficient CO₂ capture. Carbon N Y. 2019;150:43–51.
- [13] Fang K, Chen M, Chen J, et al. Cotton stalk-derived carbon fiber@Ni-Al layered double hydroxide nanosheets with improved performances for supercapacitors. Appl Surf Sci. 2019;475:372–379.
- [14] Wong S, Lee Y, Ngadi N, et al. Synthesis of activated carbon from spent tea leaves for aspirin removal. Chin J Chem Eng. 2018;26:1003–1011.
- [15] Tan YL, Abdullah AZ, Hameed BH. Product distribution of the thermal and catalytic fast pyrolysis of karanja (Pongamia pinnata) fruit hulls over a reusable silicaalumina catalyst. Fuel. 2019;245:89–95.
- [16] Zhao X, Li W, Kong F, et al. Carbon spheres derived from biomass residue via ultrasonic spray pyrolysis for supercapacitors. Mater Chem Phys. 2018;219:461–467.
- [17] Fidalgo B, MenÉNdez JÁ. Carbon materials as catalysts for decomposition and CO₂ reforming of methane: a review. Chin J Catal. 2011;32:207–216.
- [18] Du J, Li W-C, Ren Z-X, et al. Synthesis of mechanically robust porous carbon monoliths for CO₂ adsorption and separation. J Energy Chem. 2020;42:56–61.
- [19] Modak A, Bhaumik A. Porous carbon derived via KOH activation of a hypercrosslinked porous organic polymer for efficient CO₂, CH₄, H₂ adsorptions and high CO₂/N₂ selectivity. J Solid State Chem. 2015;232:157–162.
- [20] Leal NNS, Brandão-Silva AC, Fantini C, et al. Thermooptical response of colloidal metallic and semiconducting single-walled carbon nanotubes. Opt Laser Technol. 2019;116:315–321.
- [21] Li M, Huang K, Schott JA, et al. Effect of metal oxides modification on CO₂ adsorption performance over mesoporous carbon. Microporous Mesoporous Mater. 2017;249:34–41.
- [22] Isahak WNRW, Hasan SZ, Ramli ZAC, et al. Enhanced physical and chemical adsorption of carbon dioxide using bimetallic copper–magnesium oxide/carbon nanocomposite. Res Chem Intermed. 2018;44:829–841.
- [23] Wang F, Gunathilake C, Jaroniec M. Development of mesoporous magnesium oxide–alumina composites for CO₂ capture. J CO₂ Util. 2016;13:114–118.
- [24] Taira K, Nakao K, Suzuki K. CO₂ capture in humid gas using ZnO/activated carbon and ZnO reactivity with CO₂. React Kinet, Mech Catal. 2015;115:563–579.
- [25] Burri H, Anjum R, Gurram RB, et al. Mesoporous carbon supported MgO for CO_2 capture and separation of CO_2/N_2 . Korean J Chem Eng. 2019;36:1482–1488.
- [26] Islam MA, Sabar S, Benhouria A, et al. Nanoporous activated carbon prepared from karanj (Pongamia pinnata)

fruit hulls for methylene blue adsorption. J Taiwan Inst Chem Eng. 2017;74:96–104.

- [27] van Dillen AJ, Terörde RJAM, Lensveld DJ, et al. Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes. J Catal. 2003;216:257–264.
- [28] Liu C, Shi G, Wang G, et al. Preparation and electrochemical studies of electrospun phosphorus doped porous carbon nanofibers. RSC Adv. 2019;9:6898–6906.
- [29] Selva Kumar V, Hua Lee Z, Huey Sim J, et al. Improved CO₂ sorption performance of calcium oxide (CaO) sorbent with nickel oxide additive. IOP Conf Ser Earth Environ Sci. 2019;268:012026.
- [30] Chanapattharapol KC, Krachuamram S, Youngme S. Study of CO₂ adsorption on iron oxide doped MCM-41. Microporous Mesoporous Mater. 2017;245:8–15.
- [31] Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–319.
- [32] Sogut EG, Acidereli H, Kuyuldar E, et al. Single-walled carbon nanotube supported Pt-Ru bimetallic superb nanocatalyst for the hydrogen generation from the methanolysis of methylamine-borane at mild conditions. Sci Rep. 2019;9:15724.
- [33] Khutia A, Janiak C. Programming MIL-101Cr for selective and enhanced CO₂ adsorption at low pressure by postsynthetic amine functionalization. Dalton Trans. 2014;43:1338–1347.
- [34] Liu Z, Zhu Y, Du Z, et al. Detailed investigation of N-doped microporous carbons derived from urea furfural resin for CO₂ capture. J Porous Mater. 2015;22:1663–1672.
- [35] Phan A, Doonan CJ, Uribe-Romo FJ, et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res. 2010;43:58–67.

- [36] Saha D, Bao Z, Jia F, et al. Adsorption of CO₂, CH₄, N₂O, and N₂ on MOF-5, MOF-177, and Zeolite 5A. Environ Sci Technol. 2010;44:1820–1826.
- [37] Zhang W, Cheng Y, Guo C, et al. Cobalt incorporated porous aromatic framework for CO₂/CH₄ separation. Ind Eng Chem Res. 2018;57:10985–10991.
- [38] Mutyala S, Yakout SM, Ibrahim SS, et al. Enhancement of CO₂ capture and separation of CO₂/N₂ using post-synthetic modified MIL-100(Fe). New J Chem. 2019;43:9725– 9731.
- [39] Xu F, Yu Y, Yan J, et al. Ultrafast room temperature synthesis of GrO@HKUST-1 composites with high CO₂ adsorption capacity and CO₂/N₂ adsorption selectivity. Chem Eng J. 2016;303:231–237.
- [40] Gunathilake C, Jaroniec M. Mesoporous alumina–zirconia– organosilica composites for CO₂ capture at ambient and elevated temperatures. J Mater Chem A. 2015;3:2707– 2716.
- [41] Gunathilake C, Jaroniec M. Mesoporous calcium oxidesilica and magnesium oxide-silica composites for CO₂ capture at ambient and elevated temperatures. J Mater Chem A. 2016;4:10914–10924.
- [43] Bouhadjar L, Boukoussa B, Kherroub DE, et al. Adsorption behavior of carbon dioxide on new nanocomposite CuO/ PPB: effect of CuO content. J Inorg Organomet Polym Mater. 2019;29:326–331.
- [44] Wang J, Stevens LA, Drage TC, et al. Preparation and CO₂ adsorption of amine modified Mg–Al LDH via exfoliation route. Chem Eng Sci. 2012;68:424–431.

Research Paper

Study of CO₂ adsorption and separation using modified porous carbon

Journal of Chemical Research 1–7 © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1747519820938030 journals.sagepub.com/home/chl

Madhavi Jonnalagadda^{1,2,*}, Rumana Anjum¹, Harshitha Burri¹ and Suresh Mutyala^{3,4,*}

Abstract

Porous carbon and La_2O_3 /porous carbon materials are synthesized for the study of CO_2 adsorption and separation by the volumetric method. The synthesized adsorbents are characterized by X-ray diffraction, N_2 adsorption–desorption isotherms, Raman spectra and scanning electron microscopy with energy-dispersive X-ray analysis. Characterization results confirm the existence of porosity in the synthesized carbon materials and uniform distribution of lanthanum(III) oxide on porous carbon. The CO_2 adsorption capacity for porous carbon and La_2O_3 /porous carbon is 21 and 33 cm³g⁻¹, respectively, at 298K and I bar. High adsorption of CO_2 is obtained for La_2O_3 /porous carbon because of the electrostatic interaction between La_2O_3 and CO_2 . Moreover, the N_2 adsorption capacity is 2.8 cm³g⁻¹ for porous carbon and 2.2 cm³g⁻¹ for La_2O_3 /porous carbon at 298K and I bar. The change in N_2 adsorption is due to the decrease in surface area. For La_2O_3 /porous carbon, the selectivity of CO_2/N_2 is 33.5 and the heat of CO_2 adsorption is 36.5 kJ mol⁻¹ at low adsorption of CO_2 . It also shows constant CO_2 adsorption capacity in each adsorption cycle.

Keywords

adsorption cycles, CO₂ capture, heat of adsorption, lanthanum(III) oxide, porous carbon, separation

Date received: 18 April 2020; accepted: 8 June 2020

Department of Chemistry, Government Degree College for Women, Karimnagar, India **Corresponding authors:**

Madhavi Jonnalagadda, Department of Chemistry, Government Degree College for Women, Karimnagar 505001, Telangana, India. Email: madhavi0521@gmail.com

Suresh Mutyala, Department of Applied and Environmental Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Béla tér 1, 6720 Szeged, Hungary. Email: sureshm186@gmail.com

*Both authors contributed equally to this work.

²Department of Chemistry, Sri Ramachandra Arts & Science College, Kothagudem, India

³Department of Applied and Environmental Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary

⁴Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, P.R. China

Figure 1. (a) XRD patterns, and (b) Raman spectra of porous carbon and La₂O₃/porous carbon.

Introduction

Global warming is a worldwide environmental issue which is contributed to carbon dioxide. It is liberated by the combustion of fossil fuels coinciding with the high growth of the automobile and petrochemical industries.¹ Day by day, the concentration of CO₂ is increasing and has reached 400 ppm, which is more than pre-industrial levels. Hence, greater effort has to be made to control the CO₂ concentration levels in the atmosphere. Carbon capture and separation (CCS) techniques on solid materials is an important method to lower CO₂ concentration levels, as is the liquid amine solution absorption technique. In power plants, liquid amine solutions are mostly used to capture CO₂. However, high energy is required for regeneration and occurs corrosion of the pipeline system. To overcome these drawbacks, solid materials are used for CCS. So far, materials such as activated carbon,² zeolites³ and mesoporous silica⁴ have been used for CO₂ capture and separation.

Activated carbon is a cost-effective adsorbent and has a high surface area. However, the production of activated carbon on a large scale is hindered because of less renewable sources. Porous carbon synthesis from renewable sources is an important aspect. Renewable sources such as sawdust,⁵ rice husk,⁶ waste tea,⁷ biodiesel industry solid residues,⁸ cotton stalks,⁹ olive and peach stones,^{10,11} palm oil ash¹² and coffee grounds¹³ have been used to synthesize porous carbon materials. Pongamia pinnata fruit seeds are used for the production of biodiesel. During the production of biodiesel, a large quantity of pongamia pinnata fruit hulls is disposed of without commercial use. From these, porous carbon can also be synthesized by pyrolysis.

The CO₂ adsorption of porous carbon can be enhanced by the incorporation of basic metal oxide and a heteroatom, which generates basic sites on the porous carbon. The Nitrogen-doped porous carbon-derived from Hazelnut-shell has shown CO₂ adsorption capacity of $97 \text{ cm}^3 \text{ g}^{-1}$ at 298 K and 1 bar.¹⁴ Similarly, D-glucose used as a source for N-doped porous carbon synthesis and reported CO₂ adsorption capacity of 88 cm³ g⁻¹ at 298 K and 1 bar, respectively.¹⁵ Porous carbon derived from sustainable biomass stalk showed CO₂ adsorption capacity of 82.5 cm³g⁻¹ at 298 K and 1 bar.¹⁶ MgO-incorporated mesoporous carbon has shown a CO₂ adsorption capacity of 46.8 cm³g⁻¹ at 298K and 1 bar¹⁷ and CeO₂-doped mesoporous carbon demonstrated 39.7 cm3 g-1 of CO, adsorption at 303 K and 1 bar.¹⁸ The CO₂ adsorption was higher on Cu₂O and NiO-incorporated porous carbon compared to bare porous carbon.^{19,20} Recently, our group reported mesoporous carbon supported MgO for CO₂ capture. This material showed $37.6 \text{ cm}^3 \text{g}^{-1}$ of CO₂ adsorption on 10 wt% MgO-incorporated mesoporous carbon which was higher than bare mesoporous carbon CO₂ adsorption 20.2 cm³ g⁻¹ at 298K and 1 bar.²¹ For the reported adsorbents, high CO₂ adsorption was obtained for metal oxide incorporated porous carbon due to the electrostatic interaction between the metal oxide and CO₂. In this paper, we have studied the influence of a low content of lanthanum(III) oxide on a porous carbon towards CO_2 adsorption and separation. Moreover, CO2/N2 selectivity, heat of CO2 adsorption and CO₂ adsorption cycles were studied.

Results and discussion

Structural characterization

Figure 1(a) shows the X-ray diffraction (XRD) of porous carbon and lanthanum oxide incorporated porous carbon. Two broad diffraction peaks were observed at $2\theta = 24^{\circ}$ and 43.5° for the (002) and (100) planes, respectively. These were the main characteristic peaks of porous carbon.²² Moreover, lanthanum oxide–incorporated porous carbon showed diffraction peaks similar to porous carbon and no peaks related to La₂O₃ appeared. This indicated that La₂O₃ was highly dispersed on porous carbon and/or not detectable by XRD analysis. Chanapattharapol et al.²³ have also reported similar results with iron oxide doped MCM-41 for CO₂ adsorption. The Raman spectra of porous carbon and

Figure 2. (a) N_2 adsorption-desorption isotherms (closed symbol: adsorption, open symbol: desorption) and (b) pore size distribution of porous carbon and La_2O_3 /porous carbon.

Table 1. Textural properties and metal composition of the synthesized samples.

Sample	$S_{BET} (m^2 g^{-1})^a$	$V_{total} (cm^3 g^{-1})^b$	V _{micro} (cm ³ g ⁻¹) ^c	$V_{meso} \ (cm^3g^{-1})^d$	Pore size (nm) ^e	La content (wt%) ^f
Porous carbon	826	0.89	0.12	0.77	4.3	NF
La ₂ O ₃ /porous carbon	715	0.76	0.10	0.66	4.2	2.97

^aBET surface area.

^bTotal pore volume at P/P₀=0.99.

^cMicropore volume obtained from the t-plot.

^dMesopore volume obtained by subtracting V_{micro} from V_{total} .

^eAverage pore size by BET.

^fFrom EDX, NF: not found.

La₂O₃/porous carbon are shown in Figure 1(b). Porous carbon shows Raman bands at 1334 and 1582 cm⁻¹, which are related to the D-band and the G-band, respectively.²⁴ The D-band corresponds to disordered carbon, whereas the G-band corresponds to graphitic carbon. The ratio of the intensity of D and G-bands (I_D/I_G) was 0.87 for porous carbon and 0.95 for La₂O₃/porous carbon. The high I_D/I_G ratio of La₂O₃/porous carbon indicates a decrease in the graphitic nature of porous carbon by the incorporation of lanthanum oxide.²⁵

The porosity of the synthesized adsorbents was determined by measuring the N2 adsorption-desorption isotherms at 77 K. Figure 2 shows the N₂ isotherms of porous carbon and La₂O₂/porous carbon, and the textural properties are presented in Table 1. Pristine porous carbon showed high adsorption of N₂ below the relative pressure $P/P_0 = 0.1$ and a hysteresis loop between the relative pressure of 0.4 and 1.0. As per the classification of porous materials by IUPAC, the isotherm of the porous carbon material is similar to type I and type IV isotherms.²⁶ This indicated that the synthesized porous carbon has micropores and mesopores. The specific surface area, pore volume and pore size of porous carbon were $826 \text{ m}^2 \text{ g}^{-1}$, $0.89 \text{ cm}^3 \text{ g}^{-1}$ and 4.3 nm, respectively. Similarly, La2O3/porous carbon showed an isotherm curve similar to that of pristine porous carbon. However, the amount of N2 adsorption was less, which

indicated that the pores of pristine porous carbon were occupied with lanthanum oxide. Hence, a change in the textural properties was observed. The specific surface area, pore volume and pore size of La_2O_3 /porous carbon were $715 \text{ m}^2 \text{ g}^{-1}$, $0.76 \text{ cm}^3 \text{ g}^{-1}$ and 4.2 nm, respectively. Lou et al.²⁷ have also observed a change in textural properties by the occupation of ruthenium nanoparticles within the pores of porous carbon material.

Morphological images with chemical composition for porous carbon and La_2O_3 /porous carbon are shown in Figure 3. Disordered carbon particles were observed for porous carbon (Figure 3(a)). In La_2O_3 /porous carbon, the loaded La_2O_3 covers the surface of the disordered porous carbon (Figure 3(b)). From energy-dispersive X-ray (EDX) results, the amount of lanthanum was 2.97 wt%.

Study of CO_2 and N_2 adsorption

The adsorption of CO_2 and N_2 has been studied by the volumetric method using porous carbon and La_2O_3 /porous carbon. The CO_2 and N_2 adsorption isotherms are shown in Figure 4. CO_2 adsorption increased on increasing the pressure, but no equilibrium was attained for both adsorbents. The amount of CO_2 adsorption was 21 cm³g⁻¹ for porous carbon and 33 cm³g⁻¹ for La_2O_3 /porous carbon at 298 K and 1 bar. The high adsorption of CO_2 with La_2O_3 /porous

Figure 3. SEM with EDX images of (a) porous carbon and (b) La₂O₃/porous carbon.

Figure 4. CO_2 and N_2 adsorption of porous carbon and $La_2O_3/$ porous carbon (closed symbol: CO_2 adsorption, open symbol: N_2 adsorption).

carbon was due to the electrostatic interaction between lanthanum oxide and CO₂. Along with the CO₂ adsorption study, N₂ adsorption was also studied under similar conditions to those used for the CO₂ adsorption study. The amount of N₂ adsorption was 2.8 cm³ g⁻¹ for porous carbon and 2.2 cm³ g⁻¹ for La₂O₃/porous carbon at 298 K and 1 bar.

Figure 5. CO_2/N_2 selectivity on porous carbon and $La_2O_3/$ porous carbon.

The decrease in N_2 adsorption was due to a change in the surface area.

In flue gas, carbon dioxide is a major component. So, it is essential to study CO_2/N_2 selectivity. The initial slope method was used to calculate CO_2/N_2 selectivity.²⁸ Figure 5 shows the CO_2/N_2 selectivity with porous carbon and La₂O₃/porous carbon. For porous carbon, the

Figure 6. Fitting of isotherm models for CO_2 adsorption on porous carbon and La_2O_3 /porous carbon.

 CO_2/N_2 selectivity was 14.5, whereas for La_2O_3 /porous carbon, the selectivity was 33.5. High selectivity was obtained for La_2O_3 /porous carbon because of the high adsorption of CO_2 and the selectivity value was higher than those of some reported adsorbents such as HKUST-1 and Mg-MOF-74.^{29,30}

The adsorption behaviour of an adsorbent can be calculated by fitting of the experimental CO₂ adsorption with the Freundlich and Langmuir-Freundlich isotherm models.³¹ The isotherm models can be written as follows

Freundlich isotherm model : $Q = k_F P^{\frac{1}{n}}$ Langmuir – Freundlich isotherm model : $Q = \frac{Q_{max} K P^{\frac{1}{n}}}{1 + K P^{\frac{1}{n}}}$

where Q is the adsorption capacity at equilibrium (cm³ g⁻¹); Q_{max} is the maximum adsorption capacity (cm³ g⁻¹); P is the pressure (kPa); k_F and K are the Freundlich and Langmuir– Freundlich constants, respectively; and n is the heterogeneity factor. The experimental CO₂ adsorption of porous carbon and La₂O₃/porous carbon are fitted with the Freundlich and Langmuir–Freundlich isotherm models, as shown in Figure 6. The fitting parameters are presented in Supplemental Table S1. The Langmuir–Freundlich isotherm model was well-fitted with the experimental CO₂ adsorption, regression co-efficient R² > 0.999. The Q_{max} was higher for La₂O₃/porous carbon because of the strong interaction of CO₂ with lanthanum oxide.

In gas adsorption studies, the heat of adsorption (Q_{st}) is an important parameter. It describes the interaction between the adsorbate and adsorbent. The Q_{st} can be calculated using the virial equation³²

Virial equation :
$$\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{j=0}^{n} b_j N^j$$

Heat of adsorption : $Q_{st} = -R \sum_{i=0}^{m} a_i N^i$

Figure 7. The heat of CO_2 adsorption of porous carbon and La_2O_3 /porous carbon.

Figure 8. Multiple CO_2 adsorption cycles of La_2O_3 /porous carbon.

where P is the pressure in Torr, N is the gas uptake in $cm^3 g^{-1}$, T is the temperature in K, R is the universal gas constant $(8.314 \text{ JK}^{-1} \text{ mol}^{-1})$, Q_{st} is the heat of adsorption in kJ mol⁻¹, ai and bj are the virial coefficients, and m and n are the number of coefficients. To calculate the heat of CO₂ adsorption for porous carbon and La2O3/porous carbon, CO2 adsorption at 303 K was measured for both samples (see Supplemental Figure S1). The amount of CO₂ adsorption was less at 303 K compared with CO₂ adsorption at 298K because of the increase in the kinetic energy of CO2. The measured CO2 adsorption isotherms were fitted with the virial equation (Supplemental Figure S2). From the virial fitting parameters, the heat of CO₂ was calculated. The heat of CO₂ adsorption of porous carbon and La_2O_3 /porous carbon is shown in Figure 7. For porous carbon, Q_{st} was 18.9–14.5 kJ mol⁻¹, whereas for La₂O₃/porous carbon was 36.5–33.4 kJ mol⁻¹. A high Q_{st} was obtained for La₂O₃/porous carbon because of the strong interaction between CO2 and lanthanum oxide. At

Sample	Adsorption method	CO_2 adsorbed (cm ³ g ⁻¹) at 298 K, I bar Referen	
ZIF-98	Volumetric	34	Wang et al. ³³
S-doped microporous carbon	Volumetric	54	Xia et al. ³⁴
N-doped microporous carbon	Volumetric	53.7	An et al. ³⁵
Mesoporous N-doped CeO ₂	Gravimetric	24 (303 K)	Wang et al. ³⁶
PEHA-MIL-101	Volumetric	29	Anbia et al. ³⁷
Zeolite-13X	Volumetric	38	McEwen et al. ³⁸
La ₂ O ₃ /porous carbon	Volumetric	33	Present work

Table 2. Comparison of the CO₂ adsorption capacity of La₂O₃/porous carbon with reported adsorbents.

low adsorption of CO_2 , a high Q_{st} was obtained. With an increase in CO_2 adsorption, the Q_{st} decreased due to a decrease in the number of active adsorption sites.

Multiple CO₂ adsorption cycles have been studied to determine the adsorption stability of La₂O₃/porous carbon at 298K (Figure 8). Before studying the CO₂ adsorption cycle, the adsorbent was degasified at 473 K for 2 h under vacuum to remove the adsorbed CO₂. The amount of CO₂ adsorption was constant in each adsorption cycle. The CO₂ adsorption of La₂O₃/porous carbon was compared with the CO₂ adsorption capacity of previously reported adsorbents (Table 2). The synthesized La₂O₃/porous carbon showed 33 cm³ g⁻¹ of CO₂ adsorption at 298 K and 1 bar, which was in-between the CO₂ adsorption capacity of mesoporous N-doped CeO₂ and S-doped microporous carbon.^{34,36}

Conclusion

In this work, we have studied CO_2 adsorption and separation by the volumetric method using porous carbon and La_2O_3 /porous carbon. The high CO_2 adsorption capacity was obtained on La_2O_3 /porous carbon compared to bulk porous carbon at 298K and 1 bar because of electrostatic interaction of La_2O_3 with CO_2 and CO_2/N_2 selectivity was also higher on La_2O_3 /porous carbon. The heat of CO_2 adsorption was 36.5 kJ mol⁻¹ at low coverage of CO_2 for La_2O_3 /porous carbon and CO_2 adsorption capacity was constant in each adsorption cycle. Therefore, a basic metal oxide can be incorporated on porous carbon to increase the CO_2 adsorption and separation.

Experimental

Lanthanum nitrate hexahydrate [La(NO_3)_3.6H₂O, 99.9%] and orthophosphoric acid (H_3PO_4 , 85%) were purchased from Sigma-Aldrich, India, and used without purification. Distilled water was used to synthesize the adsorbents. High purity gases (carbon dioxide, nitrogen and helium) were purchased from BOC, India.

Porous carbon was synthesized by using pongamia pinnata fruit hulls which were collected from the forest region of Telangana, India. First, the fruit hulls were washed, dried then made into a powder. The powder was activated using phosphoric acid at room temperature for 24h followed by drying at 373K for 12h. The dried sample was calcined under nitrogen gas with a flow rate of 50 mL/min at 723K for 4h, with a heating rate of 5 K/min, and then cooled to room temperature. The sample was washed with distilled water until the pH reached 7, then it was dried at 373 K overnight to afford porous carbon.³⁹ Porous carbon supported lanthanum oxide was synthesized by the impregnation method.⁴⁰ About 0.1 g of lanthanum nitrate hexahydrate was dissolved in 10 mL of distilled water, stirred for 10 min then 1 g of porous carbon was added. The mixture was stirred at room temperature for 1 h and then dried at 373 K overnight. The dried compound was calcined under nitrogen gas at 873 K for 3 h.

XRD patterns were recorded on a Rigaku Ultima-IV X-ray diffractometer using Ni-filtered Cu-K_a radiation operated at a voltage of 40 kV and a current of 30 mA in the scan range of $2\theta = 10^{\circ} - 80^{\circ}$ with a step size of 0.02° /s. A Micrometric ASAP 2020 porosity analyzer was used to measure N₂ adsorption-desorption isotherms at 77 K. Prior to the adsorption study, about 0.1 g of the sample was degassed at 473 K for 2 h under vacuum. The multipoint Brunauer-Emmett-Teller (BET) surface area was calculated in the relative pressure range of 0.05-0.3, the total pore volume at a relative pressure of 0.99, the micropore volume by the t-plot method and the mesopore volume was calculated by subtracting the micropore volume from the total pore volume. The pore size distribution was plotted using non-local density functional theory. A LabRAM HR800 spectrometer was used to record the Raman spectra. The morphology and elemental composition of each sample were determined from scanning electron microscopy with energy-dispersive X-ray (SEM with EDX) analysis using a ZEISS Sigma 300 scanning electron microscopy analyzer.

The adsorption of CO₂ and N₂ was carried out using a Micromeritics ASAP 2020 gas adsorption analyzer at low pressure and at 298K. A thermostatic bath connected with water circulating jacket was used to control the sample temperature, and helium gas was used to determine the free space of the sample tube. Before the gas adsorption measurement, 0.1 g of the sample was activated at 473 K for 2 h under vacuum to remove moisture or adsorbed gases and then cooled to the gas adsorption temperature. Ultra-high pure gases were used to measure the adsorption isotherms. The initial slope method was used to calculate the selectivity of CO_2/N_2 . The virial method was used to calculate the heat of CO_2 adsorption using adsorption cycles were also studied at 298 K to calculate the adsorption stability of an adsorbent.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: The authors acknowledge the Science and Engineering Research Board, Department of Science and Technology, New Delhi, India, for financial support (grant no. EMEQ-283/2014).

ORCID iD

Madhavi Jonnalagadda (D) https://orcid.org/0000-0003-2429-2493

Supplemental material

Supplemental material for this article is available online.

References

- 1. Hosseini S, Bayesti I, Marahel E, et al. *J Taiwan Inst Chem* Eng 2015; 52: 109.
- Zhang XQ, Li WC and Lu AH. New Carbon Mater 2015; 30: 481.
- Sarker AI, Aroonwilas A and Veawab A. *Energy Procedia* 2017; 114: 2450.
- Sanz-Pérez ES, Arencibia A, Calleja G, et al. *Microporous* and Mesoporous Mater 2018; 260: 235.
- 5. Zhang H, Yan Y and Yang L. Adsorption 2010; 16: 161.
- 6. Heo YJ and Park SJ. J Ind Eng Chem 2015; 31: 330.
- 7. Gurten II, Ozmak M, Yagmur E, et al. *Biomass Bioenergy* 2012; 37: 73.
- 8. Foo KY and Hameed BH. Bioresor Technol 2013; 130: 696.
- 9. Deng H, Zhang G, Xu X, et al. *J Hazar Mater* 2010; 182: 217.
- Alslaibi TM, Abustan I, Ahmad MA, et al. J Dispersion Sci Technol 2014; 35: 913.
- 11. Torrellas SA, García Lovera R, Escalona N, et al. *Chem Eng* J 2015; 279: 788.
- 12. Khanday WA, Marrakchi F, Asif M, et al. J Taiwan Inst Chem Eng 2017; 70: 32.
- 13. Laksaci H, Khelifi A, Trari M, et al. *J Clean Prod* 2017; 147: 254.
- 14. Liu S, Ma R, Hu X, et al. *Ind Eng Chem Res* 2020; 59: 7046.
- 15. Yue L, Rao L, Wang L, et al. Energy Fuel 2018; 32: 6955.

- 16. Yang P, Rao L, Zhu W, et al. *Ind Eng Chem Res* 2020; 59: 6194.
- 17. Bhagiyalakshmi M, Hemalatha P, Ganesh M, et al. Fuel 2011; 90: 1662.
- Li M, Huang K, Schott JA, et al. *Microporous Mesoporous* Mater 2017; 249: 34.
- Kim BJ, Cho KS and Park SJ. J Colloid Interface Sci 2010; 342: 575.
- 20. Jang DI and Park SJ. Fuel 2012; 102: 439.
- 21. Burri H, Anjum R, Gurram RB, et al. *Korean J Chem Eng* 2019; 36: 1482.
- 22. Shang H, Lu Y, Zhao F, et al. RSC Adv 2015; 5: 75728.
- Chanapattharapol KC, Krachuamram S and Youngme S. Microporous Mesoporous Mater 2017; 245: 8.
- 24. Sogut EG, Acidereli H, Kuyuldar E, et al. *Sci Rep* 2019; 9: 15724.
- 25. Cheng S, Zhang L, Xia H, et al. Journal 2017; 6: 487.
- 26. Brunauer S, Emmett PH and Teller E. *J Am Chem Soc* 1938; 60: 309.
- 27. Lou BS, Veerakumar P, Chen SM, et al. *Sci Rep* 2016; 6: 19949.
- 28. Khutia A. Dalton trans 2013; 43.
- Montoro C, García E, Calero S, et al. *J Mater Chem* 2012; 22: 10155.
- Britt D, Furukawa H, Wang B, et al. Pro Natl Acad Sci USA 2009; 106: 20637.
- Mutyala S, Yakout SM, Ibrahim SS, et al. New J Chem 2019; 43: 9725.
- 32. Moon HS, Moon JH, Chun DH, et al. *Microporous Mesoporous Mater* 2016; 232: 161.
- 33. Wang B, Côté AP, Furukawa H, et al. *Nature* 2008; 453: 207.
- 34. Xia Y, Zhu Y and Tang Y. Carbon 2012; 50: 5543.
- 35. An L, Liu S, Wang L, et al. *Ind Eng Chem Res* 2019; 58: 3349.
- 36. Wang Y, Yin C, Qin H, et al. Dalton Trans 2015; 44: 18718.
- 37. Anbia M and Hoseini V. J Nat Gas Chem 2012; 21: 339.
- McEwen J, Hayman JD and Ozgur Yazaydin A. *Chem Phys* 2013; 412: 72.
- Islam MA, Sabar S, Benhouria A, et al. J Taiwan Inst Chem Eng 2017; 74: 96.
- 40. Mutyala S, Yu YD, Jin WG, et al. *J Porous Mater* 2019; 26: 1831.

A/c Dy No: Date:

UNIVERSITY GRANTS COMMISSION-SOUTH EASTERN REGIONAL OFFICE 5-9-194, CHIRAG ALI LANE, IV FLOOR A.P.S.F.C. BUILDING, HYDERABAD -500 001 Phones: 040 - 23204735, 23200208 FAX: 040 - 23204734, Website: www.ugc.ac.in.ugcsero@gmail.com

No: F. MRP-6327/15 GEN/(UGC-SERO)

The Accounts Officer South Eastern Regional Office University Grants Commission Hyderabad - 500 001

LINKNO:6327. DEPT:BOTANY COMCODE: APKA018

June, 2018

UniqueID: TLKA00000643

11. 2010

Sub: Release of Grants-in-aid to The Principal GOVT. DEGREE COLLEGE FOR WOMEN, KARIMNAGAR KARIMNAGAR DIST. 505001. Under the Scheme "Minor Research Projects" - Reg.

Sir/Madam, On the basis of the accounts received for the grants released earlier under the scheme, I am to convey the sanction of the Commission for Sir/Madam, On the basis of the accounts received to the Commission for the payment of Rs.90000. to The Principal, GOVT. DEGREE COLLEGE FOR WOMEN, KARIMNAGAR KARIMNAGAR DIST. 505001. the payment of RS. 50000. TO THE AMERICA Project entitled IN VITRO MICROPROPAGATION OF GYMNEMA SYL TZ) R. BR. EX as final instalment towards the MMENA SYL TZ) R. BR. EX ROEMER & SCHULTES. AN IMPO CINAL PLANT. submitted by DR. UPPU ANITHA DEVI Department of BOTANY as per the details given below:-

Item	Allocation (Rs.)	Amount already	Amount sanctioned now	Total grant sanctioned/released
nem		released (Rs.)	(Rs.)	so far (Rs.)
I lining Services	00	00	00	00
Firing Services	50000.	25000.	25000.	50000.
Contingency	90000.	45000.	45000.	90000.
Transl/Field Work	40000.	20000.	20000.	40000.
Tatel	180000.	90000.	90000.	180000.
Fauinment	100000.	100000.	00	100000.
Reake	20000.	20000.	00	.20000.
Tatal	120000.	120000.	00	120000.
Grand Total	300000.	210000.	90000.	300000.

ant is debitable to following head of account.

Amount Sanctioned	Head Of Accounts	Category
Rs.90000	31-GIA-MRP(50)-3(A)2202.03.102.02.01	GEN

The sanctioned amount is debitable to the Head of Account 31-GIA-MRP(50)-3(A)-2202.03.102.02.01 (General) and is 2 valid for payment during the financial year 2018-19 Only and the amount of the Grant shall be drawn by the Accounts Officer (Drawing and Disbursing Officer) UGC-SERO, Hyd. on the Grants-In Aid Bill and shall be disbursed to and credited to "The Principal, GOVT. DEGREE COLLEGE FOR WOMEN, KARIMNAGAR, KARIMNAGAR DIST. by Electronic Mode through PFMS Portal at the following details:"(a)Name & Address of Account Holder: The Principal, GOVT. DEGREE COLLEGE FOR WOMEN, KARIMNAGAR, KARIMNAGAR DIST. (b) Name & Address of Bank Branch: IOB, KARIMNAGAR

(c) Account No: 040501000016201 (d)IFSC Code:I0BA0000405.

- 3. The Grant is subject to the adjust on the basis of Utilization Certificate in the prescribed Proforma submitted by the Institution.
- 4. The Institution shall maintain proper accounts of the expenditure out of the Grants which shall be utilized only on the approved items of expenditure.
- 5. The institution may follow the General Financial Rules, 2017 and take urgent necessary action to amend their manuals of financial procedures to bring them in conformity with GFRs, 2005 and those don't have their own approved manuals on financial procedures may adopt the provision of GFRs 2005 and instructions / Guidelines there under from time to time.
- 6. The Utilization Certificate to the effect that the grant has been utilized for the propose for which it has been sanctioned shall be furnished to UGC as early as possible after the close of current financial year.
- 7. The assets acquired wholly or substantially out of UGC's Gant shall NOT be disposed or encumbered or utilized for the proposes other than those for which the grant was given without proper sanction of the UGC and should at any time the Institution ceased to function, such assets shall revert to the University Grants Commission.
- 8. A Register of Assets acquired wholly or substantially out of the Grant shall be maintained by the Institution in the prescribed proforma.
- The Grantee Institution shall ensure the utilization of Grants-in-Aid for the purpose for which it is being sanctioned / paid. In case of Non-Utilization / Part Utilization thereof, simple interest @ 10% per annum, as amended from time to time on the unutilized amount from the date of credit of amount to the date of refund as per provision contained in General Financial Rules of Govt. of India will be charged.

P.T.O.